期刊文献+

神经源性分化因子对小鼠放射性肠损伤的治疗作用 被引量:3

The therapeutic effect of NeuroD on radiation-induced intestinal injury in mice
原文传递
导出
摘要 目的 研究神经源性分化因子(NeuroD)对放射性肠损伤的治疗作用.方法 采用原核表达系统表达、纯化NeuroD与绿色荧光蛋白(EGFP)的融合蛋白(NeuroD-EGFP融合蛋白),利用倒置荧光显微镜观察NeuroD-EGFP融合蛋白的体外进入细胞的效率.40只C57BL/6J小鼠采用随机数字表法分为正常对照组、磷酸盐缓冲液(PBS)组、EGFP组、NeuroD-EGFP融合蛋白组,每组10只.除正常对照组外,其余3组动物经9 Gy γ射线全身照射后,观察NeuroD-EGFP融合蛋白在小肠上皮细胞内的分布情况和NeuroD对放射性肠损伤的治疗作用.结果 纯化得到了NeuroD-EGFP融合蛋白.细胞上清中加入NeuroD-EGFP融合蛋白后,可见绿色荧光聚集在细胞内部,表明其可穿过细胞膜进入细胞内.小鼠腹腔注射NeuroD-EGFP融合蛋白5h后,小肠绒毛上皮细胞内部有绿色荧光聚集.小鼠照射后3.5d,NeuroD-EGFP组小鼠绒毛高度高于PBS及EGFP组(F =49.49,P<0.01),隐窝深度及隐窝数目大于PBS及EGFP组(F=16.72、10.32,P<0.01).结论 NeuroD蛋白可促进放射后肠道绒毛及隐窝的修复,对放射性肠损伤具有治疗作用. Objective To evaluate the therapeutic effect of NeuroD protein on radiation-induced intestinal injuries.Methods The expression and purification of NeuroD-enhanced green fluorescent protein (EGFP) fusion protein was performed in prokaryotic expression system.The efficiency of the fusion protein transduction into cells was monitored under fluorescence microscope.C57BL/6J mice were randomly divided into four groups with 10 mice in each group:normal control group,PBS group,EGFP group,and NeuroD-EGFP group.Besides the normal control group,the other three groups of mice received 9 Gy γ-ray total body irradiation.Intestinal tissues were collected,frozen sections were prepared to monitor the distribution of NeuroD in mice intestinal tract under fluorescence microscope,and pathological sections were prepared for H&E staining to evaluate the therapeutic effect of NeuroD protein.Results The NeuroD-EGFP fusion protein was purified by Ni-NTA column and verified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).Visible green fluorescence gathered within the cells after NeuroD-EGFP fusion protein was added in the culture medium,suggesting that NeuroD-EGFP could penetrate the cell membrane into the cells.Five hours after intraperitoneal injection of NeuroD-EGFP,visible green fluorescence gathered within the intestinal epithelial cells in villi.At 3.5 d after irradiation,NeuroD-EGFP treated mice showed significantly higher villus (F =49.49,P 〈 0.01) and crypt depth (F =16.72,P 〈 0.01) and more crypts per circumference (F =10.32,P 〈 0.01) compared with PBS and EGFP groups.Conclusion NeuroD protein can accelerate the post-irradiation recovery of injured villi and crypt of intestinal tract and could be used to treat radiation-induced intestinal injuries.
出处 《中华放射医学与防护杂志》 CAS CSCD 北大核心 2015年第1期45-48,共4页 Chinese Journal of Radiological Medicine and Protection
基金 国家自然科学基金(81172597,31300694,81472917)
关键词 电离辐射 神经源性分化因子 辐射损伤 放射性肠损伤 NEUROGENIC DIFFERENTIATION (NeuroD) Ionizing radiation Radiation injury Radiation-induced intestinal injuries
  • 相关文献

参考文献1

二级参考文献34

  • 1Wang AY, Ehrhardt A, Xu H, Kay MA. Adenovirus transduction is required for the correction of diabetes using Pdx-1 or neurogenin-3 in the liver. Mol Ther 2007; 15: 255-63.
  • 2Potten CS, Booth C, Pritchard DM. The intestinal epithelial stem cell: the mucosal governor. Int J Exp Pathol 1997; 78: 219-43.
  • 3Miyachi T, Maruyama H, Kitamura T, Nakamura S, Kawakami H. Structure and regulation of the human NeuroD (BETA2/ BHF1) gene. Brain Res Mol Brain Res 1999; 69: 223-31.
  • 4Noguchi H, Matsumoto S. Protein transduction technology: a novel therapeutic perspective. Acta Med Okayama 2006; 60: 1-11.
  • 5Kaur P, Potten CS. Circadian variation in migration velocity in small intestinal epithelium. Cell Tissue Kinet 1986; 19: 591-9.
  • 6Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat transactivator protein. Cell 1988; 55:1179-88.
  • 7Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988; 55:1189-93.
  • 8Noguchi H, Matsumoto S. Protein transduction technology offers a novel therapeutic approach for diabetes. J Hepatobiliary Pancreat Surg 2006; 13: 306-13.
  • 9Snyder EL, Dowdy SF. Recent advances in the use of protein transduction domains for the delivery of peptides, proteins and nucleic acids in vivo. Expert Opin Drug Deliv 2005; 2: 43-51.
  • 10Harbour JW, Worley L, Ma D, Cohen M. Transducible peptide therapy for uveal melanoma and retinoblastoma. Arch Ophthalmol 2002; 120: 1341-6.

共引文献5

同被引文献47

  • 1Rui Wang,Wei Yuan,Qiang Zhao,Peng Song,Ji Yue,Shi-De Lin,Ting-Bao Zhao.An experimental study of preventing and treating acute radioactive enteritis with human umbilical cord mesenchymal stem cells[J].Asian Pacific Journal of Tropical Medicine,2013,6(12):968-971. 被引量:9
  • 2Stratmann G, Sail JW, May LD, et al. Isoflurane differentially affects neurogenesis and long-term neurocognitive function in 60-day-old and 7-day-old rats. Anesthesiology. 2009; 110(4): 834-848.
  • 3Fredriksson A, Ponten E, Gordh T, et al. Neonatal exposure to a combination of N-methyI-D-aspartate and gamma-aminobutyric acid type A receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits. Anesthesiology. 2007; 107(3):427-436.
  • 4刘劲,连庆泉,林函,等.七氟醚和异氟醚急性暴露对神经干细胞增殖和发育调控基因的影响[C].第十二届华东六省一市麻醉学术会议暨2013年福建省麻醉学术会议论文集,2013:438-439.
  • 5Sail JW, Stratmann G, Leong J, et al. Propofol at clinically relevant concentrations increases neuronal differentiation but is not toxic to hippocampal neural precursor cells in vitro. Anesthesiology. 2012;117(5):1080-1090.
  • 6Zhu C, Gao J, Karlsson N, et al. Isoflurane anesthesia induced persistent, progressive memory impairment, caused a loss of neural stem cells, and reduced neurogenesis in young, but not adult, rodents.J Cereb Blood Flow Metab. 2010y;30(5): 1017-1030.
  • 7Culley D J, Boyd JD, Palanisamy A, et al. Isoflurane decreases self-renewal capacity of rat cultured neural stem cells. Anesthesiology. 2011 ;115(4):754-763.
  • 8Sail JW, Stratmann G, Leong J, et al. Isoflurane inhibits growth but does not cause cell death in hippocampal neural precursor cells grown in culture. Anesthesiology. 2009; 110(4) 826-833.
  • 9Zhu C, Gao J, Karlsson N, et al. Isoflurane anesthesia induced persistent, progressive memory impairment, caused a loss of neural stem ce~ls, and reduced neurogenesis in young, but not adult, rodents. J Cereb Blood Flow Metab. 2010;30(5):1017-1030.
  • 10Eto H, ishimine H, Kinoshita K, et al. Characterization of human adipose tissue-resident hematopoietic cell populations reveals a novel macrophage subpopulation with CD34 expression and mesenchymal multipotency. Stem Cells Dev. 2013;22(6):985-997.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部