期刊文献+

神经上皮细胞转化基因1对细胞辐射敏感性的影响及其机制探讨

Effect and mechanism of neuroepithelial cell transforming gene 1 on cellular radiosensitivity
原文传递
导出
摘要 目的 探讨神经上皮细胞转化基因1(Net1)对细胞辐射敏感性的影响及相关的分子作用机制.方法 运用实时荧光定量PCR检测辐射后细胞中Net1基因表达水平的变化;采用RNAi干扰技术抑制细胞中Net1的表达,用克隆形成率分析细胞的辐射敏感性;利用免疫共沉淀技术发现Net1的结合蛋白.结果 电离辐射损伤后,细胞中的Net1 mRNA水平显著上升(t=-10.52,P<0.05);与对照组相比,siRNA沉默细胞中的Net1表达后明显增加了细胞的辐射敏感性(t=15.31、11.65,P<0.05);无论在正常状态下还是在细胞受到辐照后,Net1都能与非同源末端连接修复蛋白Ku70、Ku80和DNA-PKcs结合.结论 Net1对细胞的辐射防护作用可能是通过与非同源末端连接修复蛋白相互作用来调控辐射损伤修复实现的. Objective To study the effect of neuroepithelial cell transforming gene 1 (Net1) on the cellular radiosensitivity and underlying mechanism.Methods Real-time quantitative PCR was used to measure the variations in Net1 expression level upon irradiation.Radiosensitivity was analyzed by colonyforming assay after Net1-siRNAs.Net1-associated proteins were identified by co-immunoprecipitation.Results The Net1 mRNA level in the cells was increased significantly (t =-10.52,P 〈 0.05) after irradiation.Compared to the control group,siRNA-mediated silencing of Net1 enhanced cell radiosensitivity (t =15.31,11.65,P 〈0.05).Net1 was found to interact with Ku70,Ku80 and DNA-PKcs under either normal conditions or after irradiation.Conclusions Net1 could protect cells from irradiation by interaction with DNA repair proteins in non-homologous end joining pathway.
出处 《中华放射医学与防护杂志》 CAS CSCD 北大核心 2015年第1期49-52,共4页 Chinese Journal of Radiological Medicine and Protection
基金 国家自然科学基金(31200634,31170804) 天津市自然科学基金(12JCYBJC32900).
关键词 神经上皮细胞转化基因1 辐射敏感性 DNA双链断裂 非同源末端连接 Net1 Radiosensitivity DNA double-strand break Non-homologous end joining
  • 相关文献

参考文献2

二级参考文献166

  • 1Ira G, Pellicioli A, Balijja A, et al. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK 1. Nature 2004; 431:1011-1017.
  • 2Freudenreich CH. Chromosome fragility: molecular mechanisms and cellular consequences. Front Biosci 2007; 12:4911-4924.
  • 3Azvolinsky A, Dunaway S, Torres JZ, Bessler JB, Zakian VA. The S-cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes. Genes Dev 2006; 20:3104-3116.
  • 4Kolodner RD, Putnam CD, Myung K. Maintenance of genome stability in Saccharomyces cerevisiae. Science 2002; 297:552-557.
  • 5Prakash S, Prakash L. Translesion DNA synthesis in eukaryotes: a one- or two-polymerase affair. Genes Dev 2002; 16:1872- 1883.
  • 6Heller RC, Marians KJ. Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol2006; 7:932-943.
  • 7Heller RC, Marians KJ. Replication fork reactivation downstream of a blocked nascent leading strand. Nature 2006; 439:557- 562.
  • 8Lopes M, Foiani M, Sogo JM. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 2006; 21:15-27.
  • 9Bianchi M, DasGupta C, Radding CM. Synapsis and the formation of paranemic joints by E. coli RecA protein. Cell 1983; 34:931-939.
  • 10Hickson ID. RecQ helicases: caretakers of the genome. Nat Rev Cancer 2003; 3:169-178.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部