期刊文献+

酿酒酵母工程菌高密度培养生产香紫苏醇 被引量:3

High cell density culture of an engineered yeast strain for sclareol production
原文传递
导出
摘要 为提高酿酒酵母工程菌S7香紫苏醇产量,采用摇瓶培养,研究了其生长和代谢特点,发现产物合成与菌体生长密切关联。在3 L发酵罐中通过补料-溶氧联动控制的方式,以葡萄糖、乙醇和葡萄糖/乙醇混合物为碳源进行高密度培养,香紫苏醇产量分别达到253 mg/L、386 mg/L和408 mg/L,最高产量是摇瓶培养的27倍。说明添加乙醇作为碳源有助于香紫苏醇合成。研究结果对优化酿酒酵母细胞工厂,高效生产萜类化合物具有重要参考价值。 Cell growth profiles were evaluated in shake-flask culture to improve sclareol production by the engineered yeast strain Saccharomyces cerevisiae S7. Product formation was tightly coupled with cell growth. High cell density cultures were performed with different carbon sources using a dissolved oxygen level feedback-control strategy in a 3 L bioreactor. The titers of sclareol were 253 mg/L, 386 mg/L and 408 mg/L, respectively, when glucose, ethanol and glucose/ethanol mixture were used as the carbons sources. The maximal titer was 27-fold higher than that obtained under shake-flask culture conditions. The results suggested that the presence of ethanol was beneficial to sclareol production. These results provided useful information for optimization of yeast cell factory and efficient production of terpenoids.
出处 《生物工程学报》 CAS CSCD 北大核心 2015年第1期147-151,共5页 Chinese Journal of Biotechnology
基金 国家自然科学基金(No.21325627)资助~~
关键词 香紫苏醇 酿酒酵母 二萜化合物 高密度培养 sclareol, Saccharomyces cerevisiae, diterpenoids, high cell density culture
  • 相关文献

参考文献18

  • 1Dimas K, Kokkinopoulos D, Demetzos C, et al. The effect of sclareol on growth and cell cycle progression of human leukemic cell lines. Leuk Res, 1999, 23(3): 217-234.
  • 2Mahaira LG, Tsimplouli C, Sakellaridis N, et al. The labdane diterpene sclareol (labd-14-ene-8, 13-diol) induces apoptosis in human tumor cell lines and suppression of tumor growth in vivo via a p53-independent mechanism of action. Eur J Pharmacol, 2011,666(1/3): 173-182.
  • 3Caissard JC, Olivier T, Delbecque C, et al. Extracellular localization of the diterpene sclareol in clary Sage (Salvia sclarea L., Lamiaceae). PLoS ONE, 2012, 7(10): e48253.
  • 4Ajikumar PK, Xiao WH, Tyo KE, et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science, 2010, 330(6000): 70-74.
  • 5Yoon SH, Kim JE, Lee SH, et al. Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Appl Microbiol Biotechnol, 2007, 74(1): 131-139.
  • 6Zhou YJ, Gao W, Rong Q, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc, 2012, 134(6): 3234-3241.
  • 7Schalk M, Pastore L, Mirata MA, et al. Towards a biosynthetic route to sclareol and amber odorants. J Am Chem Soc, 2012, 134(46): 18900-18903.
  • 8杨薇,周雍进,刘武军,沈宏伟,赵宗保.构建酿酒酵母工程菌合成香紫苏醇[J].生物工程学报,2013,29(8):1185-1192. 被引量:8
  • 9Tsuruta H, Paddon C J, Eng D, et al. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin in Escherichia coil PLoS ONE, 2009, 4(2): e4489.
  • 10Wcstfall PJ, Pitera D J, Lenihan JR, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci USA, 2012, 109(3): E111-E118.

二级参考文献21

  • 1Bohlmann J, Keeling CI. Terpenoid biomaterials. Plant J, 2008, 54(4): 656-669.
  • 2Misawa N. Pathway engineering for functional isoprenoids. Curr Opin Biotechnol, 2011, 22(5): 627-633.
  • 3Ajikumar PK, Tyo K, Carlsen S, et al. Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol Pharm, 2008, 5(2): 167-190.
  • 4Martin V J, Pitera D J, Withers ST, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol, 2003, 21(7): 796-802.
  • 5Ajikumar PK, Xiao WH, Tyo KE, et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science, 2010, 330(6000): 70-74.
  • 6Alper H, Miyaoku K, Stephanopoulos G. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol, 2005, 23(5): 612-616.
  • 7Zhou Y J, Gao W, Rong Q, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc, 2012, 134(6): 3234-3241.
  • 8Tokuhiro K, Muramatsu M, Ohto C, et al. Overproduction of geranylgeranio! by metabolically engineered Saccharomyces cerevisiae. Appl Environ Microbiol, 2009, 75(17): 5536-5543.
  • 9Ohto C, Muramatsu M, Obata S, et al. Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae for production of prenyl alcohols. Appl Microbiol Biotechnol, 2009, 82(5): 837-845.
  • 10Dai Z, Liu Y, Huang L, et al. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae. Biotechnol Bioeng, 2012, 109(11): 2845-2853.

共引文献7

同被引文献22

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部