期刊文献+

A Nonparametric Approach to Foreground Detection in Dynamic Backgrounds 被引量:3

A Nonparametric Approach to Foreground Detection in Dynamic Backgrounds
下载PDF
导出
摘要 Foreground detection is a fundamental step in visual surveillance.However,accurate foreground detection is still a challenging task especially in dynamic backgrounds.In this paper,we present a nonparametric approach to foreground detection in dynamic backgrounds.It uses a history of recently pixel values to estimate background model.Besides,the adaptive threshold and spatial coherence are introduced to enhance robustness against false detections.Experimental results indicate that our approach achieves better performance in dynamic backgrounds compared with several approaches. Foreground detection is a fundamental step in visual surveillance.However,accurate foreground detection is still a challenging task especially in dynamic backgrounds.In this paper,we present a nonparametric approach to foreground detection in dynamic backgrounds.It uses a history of recently pixel values to estimate background model.Besides,the adaptive threshold and spatial coherence are introduced to enhance robustness against false detections.Experimental results indicate that our approach achieves better performance in dynamic backgrounds compared with several approaches.
出处 《China Communications》 SCIE CSCD 2015年第2期32-39,共8页 中国通信(英文版)
基金 supported by Fund of National Science & Technology monumental projects under Grants No.61105015,NO.61401239,NO.2012-364-641-209
关键词 foreground detection dynamic background the decision threshold spatial coherence 错误检测 非参数方法 动态背景 空间相干性 自适应阈值 视频监控 背景模型 历史记录
  • 相关文献

参考文献15

  • 1S. Brutzer, B. Hoferlin, and G. Heidemann, "Eval- uation of background subtraction techniques for video surveillance," in Proc. IEEE Conf. Com- put. Vis. Pattern Recognit., Ju n. 2011 : 1937-1944.
  • 2D. Parks and S. Fels, "Evaluation of background subtraction algorithms with post-processing," in Proc. IEEE Int. Conf. Adv. Video Signal Based Surveillance, Santa Fe, New Mexico, Sep. 2008, pp. 192-199.
  • 3Juan Liao, Rong Dong, Bo Li, Qimei Chen. "A Non-parametric Motion Model for Foreground Detection in Camera Jitter Scenes," IEEE Signal Processina Letters, 2014, 21 (6): 677-681.
  • 4T. Bouwmans, "Recent advanced statistical back- ground modeling for foreground detection - a systematic survey," Recent Patents on Computer Science, Nov. 2011, 4: 147-176.
  • 5Z. Zivkovic, "Efficient adaptive density esti- mation per image pixel for the task of back- ground subtraction," IEEE Pattern Recognit. Lett. 2006(27): 773-783.
  • 6A. EIgammal, R. Duraiswami, D. Harwood, and L. Davis, "Background and foreground modeling using nonparametric kernel density for visual surveillance," Proc. IEEE, Jul. 2002, 90(7): 1151- 1163.
  • 7Y. Nonaka, A. Shimada, H. Nagahara, and R. Taniguchi. Evaluation report of integrated back- ground modeling based on spatial-temporal features. In Proc. IEEE Workshop. Comput. Vis. Pattern Recognit., 2012: 9-14.
  • 8L. Maddalena and A. Petrosino. "The SOBS algorithm: what are the linits?" In Proc. IEEE Workshop. Comput. Vis. Pattern Recognit., Jun. 2012: 21-26.
  • 9O. Barnich and M. V. Droogenbroeck, "VIBe: A universal background subtraction algorithm for video sequences," IEEE Trans. Image Process., Jun. 2011, 20(6): 1709-1724.
  • 10Mould N, Havlicek J R "Neighborhood-level learning techniques for nonparametric scene models," Signal, Image and Video Processing, 2013: 1-15.

同被引文献6

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部