期刊文献+

惯性式冲击振动落砂机周期倍化分岔的反控制 被引量:3

ANTI-CONTROLLING PERIOD-DOUBLING BIFURCATION OF AN INERTIAL IMPACT SHAKER SYSTEM
原文传递
导出
摘要 在不改变惯性式冲击振动落砂机系统平衡解结构的前提下,考虑碰撞振动系统的Poincaré映射的隐式特点以及经典的映射周期倍化分岔临界准则给反控制带来的困难,基于不直接依赖于特征值计算的周期倍化分岔显式临界准则,研究了落砂机系统周期倍化分岔的反控制.论文首先对落砂机系统施加线性反馈控制,得到受控闭环系统的Poincaré映射,并应用不直接依赖于特征值计算的周期倍化分岔显式临界准则,获得了系统发生周期倍化分岔的控制参数区域.然后应用中心流形-正则形方法分析了周期倍化分岔的稳定性.最终采用数值仿真验证了在任意指定的系统参数点通过控制能产生稳定的周期倍化分岔解. In the premise of no change of periodic solutions of the original system and with consideration of the difficulties that given by the implicit Poincarémap of the impact shaker system and the classical critical criterion of mapping period-doubling bifurcation described by the properties of eigenvalues,the method of anti-control of period-doubling bifurcation of an inertial impact shaker system,which is based on an explicit critical criterion without using eigenvalues calculation,is proposed.Firstly,the linear feedback control is used to deduce the Poincarémap of close-loop system,and the period-doubling bifurcation explicit critical criterion without using eigenvalues calculation is applied to obtain the controlling parameters area.Then,the stability of the period-doubling bifurcation is further analyzed by utilizing the center manifold and normal formal theory.The ultimate numerical experiments verify that the stable period-doubling bifurcation solutions can be generated at an arbitrary specified parameters point by controlling.
出处 《固体力学学报》 CAS CSCD 北大核心 2015年第1期28-34,共7页 Chinese Journal of Solid Mechanics
基金 国家杰出青年科学基金项目(11225212) 国家自然科学基金项目(11002052和11372101) 湖南省教育厅高等学校科学研究项目(12C0627)资助
关键词 反控制 周期倍化分岔 冲击振动 落砂机 anti-control period-doubling bifurcation impact vibration inertial impact shaker
  • 相关文献

参考文献16

  • 1Wagg D J. Periodic sticking motion in a two-degree- of-freedom impact oscillator[J]. International Journal of Non-Linear Mechanics,2005,40(8) : 1076-1087.
  • 2Wen G L, Xie J H. Period-doubling bifurcation and non-typical routes to chaos of a two-degree-of-free- dom vibro-impact system[J]. Journal of Applied Me- chanics transactions of the Asme, 2001,68 (4) : 670- 674.
  • 3Luo A C J,Chen L D. Periodic motions and grazing in a harmonically forced piecewise linear oscillator with impaets[J]. Chaos Solitons : Fractals, 2005,24 (2) : 567-578.
  • 4罗冠炜,谢建华.一类含间隙振动系统的周期运动稳定性、分岔与混沌形成过程研究[J].固体力学学报,2003,24(3):284-292. 被引量:20
  • 5谢建华,郑小武.惯性式冲击振动落砂机周期运动的Hopf分叉[J].振动工程学报,1999,12(3):297-303. 被引量:12
  • 6罗冠炜,谢建华.冲击振动落砂机的周期运动稳定性与分叉[J].机械工程学报,2003,39(1):74-78. 被引量:19
  • 7丁旺才,谢建华,李万祥.碰撞振动系统强共振下的两参数动力学分析[J].计算力学学报,2004,21(6):658-664. 被引量:6
  • 8Chen G R,Lu J L, Nicholas B,Ranganathan S M. Bi- furcation dynamics in discrete-time delay-feedback control systems[J]. International Journal of Bifurca- tion and (2haos,1999,9(1) :287-293.
  • 9Ghen D S, Wang H O, (2hen G R. Anti-control of Hopf bifurcation [J]. IIEEE Transactions on Circuit and Systems,2001,48(6) :661-672.
  • 10Chen Z, Yu P. Controlling and anti controlling Hopf bifurcations in discrete maps using polynornial func- tions[J]. Chaos Solitons : Fractals, 2005,26(4): 1231-1248.

二级参考文献42

共引文献66

同被引文献15

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部