期刊文献+

基于非局部相似度约束的多通道复用压缩遥感成像方法 被引量:2

A multi-channel multiplexing compressive remote sensing approach based on non-local similarity constraint
下载PDF
导出
摘要 结合压缩感知成像原理和遥感成像系统的物理可实现性,提出了采用掩膜编码的多通道复用压缩成像方法.首先,采用多组随机二值伯努利分布的掩膜为不同光学通道视场进行压缩编码,在单位积分时间内采集重构图像所需的欠采样数据.然后,针对传统的全变分范数最小化的重构方法易受遥感图像局部突出特征干扰的问题,提出了以遥感图像空间域非局部相似度为正则化重构标准的先验约束.实验结果验证了此压缩成像方法的可行性.与传统算法相比,此重构算法能够在保留图像细节的同时实现有效重构. A multi-channel multiplexing compressive sensing imaging approach based on compressive sensing is proposed for physical realizable remote sensing systems. First,multi-masks coded with random binary Bernoulli matrix are explored for different optical channels,and the undersampled data of an image are collected in an exposure time. Next,non-local similarity of spatial remote sensing images is presented as the regularization term for reconstruction to remove the reconstructed interference caused by local prominent features in remote sensing scene. The experimental results demonstrate the feasibility of this compressive remote sensing imaging. The proposed algorithm can preserve image details and achieve an effective image reconstruction compared with traditional algorithms.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2015年第1期122-127,共6页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金(61302132 61171126) 上海市教育发展基金会"晨光计划"(13CG51) 上海市重点支撑项目(12250501500) 交通部应用基础研究项目(2014329810060) 上海海事大学校基金(20130435)~~
关键词 遥感成像 压缩感知 多通道复用 非局部相似度 remote sensing imaging compressive sensing non-local mean multi-channel multiplexing
  • 相关文献

参考文献17

  • 1Ma J. Single-pixel remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 199-203.
  • 2杨扬,刘哲,张萌.一种基于全变差模型的欠采样图像重构方法[J].红外与毫米波学报,2012,31(2):153-158. 被引量:7
  • 3Lustig M, Donoho D, Pauly J M. Sparse MRI: The application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195.
  • 4Baraniuk R G. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.
  • 5Neifeld M A, Ke J. Optical architectures for compressive imaging[J]. Applied Optics, 2007, 46(22): 5293-5303.
  • 6Tropp J and Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
  • 7Blumensath T, Davies M. Iterative hard thresholding for compressed sensing[J]. Applied and Computational Harmonic Analysis, 2009, 27(3): 265-274.
  • 8Wang Y, Yang J, Yin W, et al. A new alternating minimization algorithm for total variation image reconstruction[J]. SIAM Journal on Imaging Sciences, 2008, 1(3): 248-272.
  • 9Ma J, Hussaini M Y. Extensions of compressed imaging: Flying sensor, coded mask, and fast decoding[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(9): 3128-3139.
  • 10Xiao L, Liu K, Han D, et al. A compressed sensing approach for enhancing infrared imaging resolution[J]. Optics & Laser Technology, 2012, 44(8): 2354-2360.

二级参考文献23

  • 1Candès E J.Compressive sampling[C].International Con-gress of Mathematics.Madrid,Spain,2006,3:1433-1452.
  • 2Donoho D.Compressed sensing[J].IEEE Trans.on Infor-mation Theory,2006,52(4):1289-1306.
  • 3Candès E J,Romberg J.Practical signal recovery from ran-dom projections[C].In SPIE International Symposium onElectronic Imaging:Computational Imaging Ⅲ,San Jose,California,January 2005.
  • 4Gan L.Block compressed sensing of natural images[C].Proc.Int.Conf.on Digital Signal Processing(DSP),Car-diff,UK,2007.
  • 5Chen S,Donoho D,Saunders M.Atomic decomposition bybasis pursuit[J].SIAM Review.2001,43(1):129-159.
  • 6Rudin L I,Osher S,Fatemi E.Nonlinear total variationbased noise removal algorithms[J].Physica D:NonlinearPhenomena,1992,60(1-4):259-268.
  • 7Blomgren P,Chan T F.Color TV:total variation methodsfor restoration of vector-valued images[J].IEEE Trans.Image Process,1998,7:304-309.
  • 8Tropp J A,Gilbert A C.Signal recovery from partial in-formation by orthogonal matching pursuit[OL].April2005,www.personal.umich.edu/-jtropp/papers/TG052Signal Recovery.pdf.
  • 9Piella G.New quality measures for image fusion[C].The7th International Conference on Information Fusion.Stock-holm,Sweden,June 28 to July 1,2004:542-546.
  • 10Scribner D A, Sarkady K A, Kruer M R, et al. Adaptive retina-like preprocessing for image detector arrays[C]//IEEE,1993, 3: 1955-1960.

共引文献11

同被引文献22

  • 1Duarte M, Davenport M. Takhar D, et al. Single-pixel imaging via compressive sampling [ J ]. IEEE Signal Processing Magazine, 2008, 25(2) : 83 -91.
  • 2Lustig M, Donoho D, Pauly J M. Sparse MRI: The application of compressed sensing for rapid MR imaging[ J]. Magnetic Resonance in Medicine, 2007, 58 ( 6 ) : 1182 - 1195.
  • 3Needell D, Vershynin R. Signal recovery from incomplete and inaccu- rate measurements via regularized orthogonal matching pursuit [ J ].IEEE Journal of Selected Topics in Signal Processing, 2010, 4 ( 2 ) 310 -316.
  • 4Tropp J, Gilbert A. Signal recovery from random thogonal matching pursuit [ J ]. IEEE Transactions on Information The- ory, 2007,53(12) :4655 -4666.
  • 5Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems [ J ]. SIAM Journal on Imaging Sciences, 2009, 2 ( 1 ) : 183 - 202.
  • 6Blumensath T, Davies M. Iterative hard thresholding for compressed sensing[ J]. Applied and Computational Harmonic Analysis, 2009, 27 (3) : 265 - 274.
  • 7Patel V M, Maleh R, Gilbert A C. Gradient-based image recovery methods from incomplete fourier ts [ J ]. IEEE Transaction on Image Processing, 2012, 21 ( 1 ) : 94 - 105.
  • 8Wang Y, Yang J, Yin W, et al. A new alternating minimization algo- rithm for total variation image reconstruction[ J]. SlAM Journal on Im- aging Sciences, 2008,1 (3) : 248 - 272.
  • 9Takeda H, Farsiu S , Milanfar P. Kernel regression for image process- ing and reconstruction [ J ]. IEEE Transaction on Image Processing, 2007,16(2) : 349 -366.
  • 10Willett R M, Marcia R F, Nichols J M. Compressed sensing for practi- cal optical imaging systems : a tutorial [ J ]. Optical Engineering, 2011, $0(7), 072601-14.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部