期刊文献+

先进PWR堆腔淹没情况下的自然循环研究

Study on Natural Circulation Flow under Reactor Cavity Flooding Condition in Advanced PWRs
原文传递
导出
摘要 在先进压水堆核电厂中,堆腔注水是重要的严重事故管理措施之一。采用RELAP5程序对堆腔淹没情况下反应堆压力容器(RPV)外壁与保温层间隙内的自然循环进行研究。通过对韩国APR1400堆腔注水系统实验的模拟,证明RELAP5程序模拟此类自然循环的适用性。对美国AP1000堆腔自然循环的分析表明,保温层间隙内建立的自然循环有足够的热量排出能力,可以有效防止RPV下封头的热失效。敏感性分析结果表明,冷却水入口面积越大,自然循环的流量越大;为了使产生的蒸汽顺利排出以建立稳定的自然循环,汽-水出口面积应足够大,且汽-水出口应布置在不会被堆腔水淹没的位置;在堆腔注水措施的实施中,应保证堆腔被淹没到足够高的位置以提供足够的循环静压驱动力。 Cavity flooding is an important severe accident management measure for the in-vessel retention of a degraded core by external reactor vessel cooling in advanced PWRs, A code simulation study on the natural circulation flow in the gap between the reactor vessel wall and insulation material under cavity flooding condition is performed by using a detailed mechanistic thermal-hydraulic code package RELAP 5. By simulating of an experiment carried out for studying the natural circulation flow for APR 1400 shows that the code is applicable for analyzing the circulation flow under this condition. The analysis results show that heat removal capacity of the natural circulation flow in AP 1000 is sufficient to prevent thermal failure of the reactor vessel under bounding heat load. Several conclusions can be drawn from the sensitivity analysis. Larger coolant inlet area induced larger natural circulation flow rate. The outlet should be large enough and should not be submerged by the cavity water to vent the steam-water mixture. In the implementation of cavity flooding, the flooding water level should be high enough to provide sufficient natural circulation driven force.
出处 《核动力工程》 EI CAS CSCD 北大核心 2015年第1期28-32,共5页 Nuclear Power Engineering
关键词 熔融物堆内保持 堆腔注水 自然循环 In-vessel retention, Cavity flooding, Natural circulation
  • 相关文献

参考文献5

  • 1Jae H P, Yong H J, Back W P, et al. An assessment methodology for in vessel corium retention by external reactor vessel cooling during severe accidents in PWRs[J]. Annuals of Nuclear Energy, 2001, 28: 1237- 1250.
  • 2Westinghouse Electricity Company. In-vessel retention of molten core debris[R]. AP1000 probabilistic safety assessement. 2003.
  • 3Ha K S, Park R J, Kim H Y, et al. A study on the two-phase natural circulation flow through the annular gap between a reactor vessel and insulation system[J]. Int Comm Heat Mass Transfer, 2004,31: 43-52.
  • 4Theofanous T G, Liu C, Addition S, et al. In-vessel coolability and retention of a core melt[J]. Nuclear Engineering and Design, 1997, 169:1-48.
  • 5Theofanous T G. In-vessel coolability and retention of a core melt[R]. Department of Energy Report (DOE/ID- 10406), 1996.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部