期刊文献+

NGINAR(1)模型参数的拟似然估计

Quasi-Likelihood Estimation of Parameters in NGINAR( 1) Model
下载PDF
导出
摘要 利用拟似然法对Ristic提出的几何分布的整值自回归过程(NGINAR(1))的参数估计问题进行研究,得到了参数的修正拟似然估计因子及其极限分布,并做了数值实验,将拟似然估计与Yule-Walker估计及CLS估计进行比较。结果表明:拟似然估计在一定程度上优于Yule-Walker估计及CLS估计。 We used quasi-likelihood method to estimate the parameter of NGINAR ( 1 ) process, and obtained the modified-quasi-likelihood estimator of the model parameters and the asymptotic distribu- tion of this estimator. We compared the modified-quasi-likelihood estimator with the Yule-Walker estimator and the conditional least squares estimator via simulation. The results show that the modified- quasi-likelihood estimator is better than Yule-Walker estimator and the conditional least squares estimator.
机构地区 陆军军官学院
出处 《重庆理工大学学报(自然科学)》 CAS 2015年第2期141-146,共6页 Journal of Chongqing University of Technology:Natural Science
基金 军内基金资助项目(jnky2012015 2014XYJJ-032)
关键词 整值时间序列 负二项稀疏算子 拟似然估计 渐近分布 integer-valued time series negative binomial thinning quasi-likelihood method asymptotic distribution
  • 相关文献

参考文献11

  • 1Steutel F, Van Ham K. Discrete analogues of self-decomposability and stability[ J ]. Ann. Probab. 1979 (7) :893-899.
  • 2Ristic M M. A new geometric first-order integer-valued autoregressive (NGINAR( 1 ) ) process[ J]. Journal of Statistical Plan- ning and Inference,2009,139:2218-2226.
  • 3Wedderburn R. Quasi-Likelihood Functions, Generalized Linear Models, and the Gauss-Newton Method[ J ]. Biometrika, 1974, 61 (3) :439-447.
  • 4Lu J, CHEN Di, ZHOU Wei-xing. Quasi-Likelihood Estimation for GLM with Random Scales [ J ]. Journal of Statistical Planning and Inference,2006,136 (2) :401-429.
  • 5Lin Peisheng. Efficiency of Quasi-Likelihood Estimation for Spatially Correlate Binary Data on LpSpaces [J]. Journal of Statisti- cal Planning and Inference ,2008,138 (6) : 1528-1541.
  • 6Zheng Haitao, Basawa I V, Datta S. First Order Random Coefficient Integer-Valued Autoregressive Processes [ J ]. Journal of Sta- tistical Planning and Inference ,2007,137( 1 ) :212-229.
  • 7Zheng Haitao, Basawa I V, Datta S. Inference for Pth-Order Random Coefficient Integer-Valued Autoregressive Processes [ J ]. Journal of Time Series Analysis ,2006,27 ( 3 ) :411-440.
  • 8薄海玲,张海祥,张哲.INARS(p)模型的拟似然统计推断[J].吉林大学学报(理学版),2010,48(2):219-225. 被引量:2
  • 9Billingsley P. Statistical Inference for Markov Processes[ M]. Chicago:University of Chicago Press, 1961:3-6.
  • 10Hall P, Heyde C C. Martingale Limit Theory and Its Application [ M ]. NewYork: Academic Press, 1980.

二级参考文献9

  • 1Wedderbum R. Quasi-Likelihood Functions, Generalized Linear Models, and the Gauss-Newton Method [ J ]. Biometrika, 1974, 61(3) : 439-447.
  • 2Lu J, CHEN Di, ZHOU Wei-xing. Quasi-Likelihood Estimation for GLM with Random Scales [ J ]. Journal of Statistical Planning and Inference, 2006, 136(2) : 401-429.
  • 3LIN Pei-sheng. Efficiency of Quasi-Likelihood Estimation for Spatially Correlated Binary Data on Lp Spaces [ J ]. Journal of Statistical Planning and Inference, 2008, 138 (6) : 1528-1541.
  • 4Azrak R, Melard G. The Exact Quasi-Likelihood of Time-Dependent ARMA Models [ J 1. Journal of Statistical Planning and Inference, 1998, 68(1) : 31-45.
  • 5ZHENG Hai-tao, Basawa I V, Datta S. Inference for pth-Order Random Coefficient Integer-Valued Autoregressive Processes [J]. Journal of Time Series Analysis, 2006, 27(3): 411-440.
  • 6ZHENG Hai-tao, Basawa I V, Datta S. First-Order Random Coefficient Integer-Valued Autoregressive Processes [ J ]. Journal of Statistical Planning and Inference, 2007, 137( 1 ) : 212-229.
  • 7Kim H Y, Park Y. A Non-Stationary Integer-Valued Autoregressive Model [J]. Statistical Papers, 2008, 49(3): 485 -502.
  • 8Hall P, Heyde C C. Martingale Limit Theory and Its Application [ M]. New York: Academic Press, 1980.
  • 9Klimiko L A, Nelson P I. On Conditional Least Squares Estimation for Stochastic Processes [ J ]. The Annals of Statistics, 1978, 6(3): 629-642.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部