期刊文献+

基于脉冲时间依赖可塑性的自适应神经网络抗扰能力研究 被引量:9

Robustness Analysis of Adaptive Neural Network Model Based on Spike Timing-Dependent Plasticity
原文传递
导出
摘要 为探究生物神经网络的自组织抗扰特性,进而为电子系统的电磁仿生防护提供新的思路和方法,本文基于神经网络中信息传递的机制和脉冲时间依赖突触可塑性(STDP)机制,探讨了突触可塑性与生物自适应特性的关系,然后选取Izhikevich神经元模型作为基本单元,以STDP机制调节的突触为桥梁,构建了四层的前馈神经网络模型,最后分析了该网络的自适应抗扰能力。仿真结果表明,基于STDP机制的神经网络具有很好的抗扰能力,且这种特性与STDP机制密切相关。基于此仿真工作将进一步进行领域转换,搭建模拟生物神经系统信息处理机制的神经元及突触的单元电路,并以该单元电路为基础设计具有自适应抗扰的电子电路。 To explore the self-organization robustness of the biological neural network,and thus to provide new ideas and methods for the electromagnetic bionic protection,we studied both the information transmission mechanism of neural network and spike timing-dependent plasticity(STDP)mechanism,and then investigated the relationship between synaptic plastic and adaptive characteristic of biology.Then a feedforward neural network with the Izhikevich model and the STDP mechanism was constructed,and the adaptive robust capacity of the network was analyzed.Simulation results showed that the neural network based on STDP mechanism had good rubustness capacity,and this characteristics is closely related to the STDP mechanisms.Based on this simulation work,the cell circuit with neurons and synaptic circuit which can simulate the information processing mechanisms of biological nervous system will be further built,then the electronic circuits with adaptive robustness will be designed based on the cell circuit.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2015年第1期25-31,共7页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(61305077)
关键词 电磁仿生防护 神经网络 脉冲时间依赖可塑性 自适应抗扰 electromagnetic bionic protection neural network spike timing-dependent plasticity adaptive robust capacity
  • 相关文献

参考文献19

  • 1巨政权,张海川,满梦华.一种适用于功能电路的自组织神经网络模型构建[J].电讯技术,2011,51(8):90-95. 被引量:2
  • 2刘尚合,原亮,褚杰.电磁仿生学—电磁防护研究的新领域[J].自然杂志,2009,31(1):1-7. 被引量:56
  • 3MARKRAM H,LUBKE J,FROTSCHER M,et al.Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs[J].Science,1997,275(5297):213-215.
  • 4DAN Y,POO M M.Spike timing-dependent plasticity:from synapse to perception[J].Physiol Rev,2006,86(3):1033-1048.
  • 5HEBB D O.The organization of behavior:a neuropsychological theory[M],New York:Psychology Press,1949.
  • 6VAN ROSSUM M C,BI G Q,TURRIGIANO G G.Stable Hebbian learning from spike timing-dependent plasticity[J].J Neurosci,2000,20(23):8812-8821.
  • 7KUBOTA S,KITAJIMA T.How balance between LTP and LTD can be controlled in spike- timing-dependent learning rule[C]//International Joint Conference on Neural Networks,Atlanta,GA;2009:1674-1679.
  • 8HONDA M,URAKUBO H,KOUMURA T,et al.A common framework of signal processing in the induction of cere-bellar LTD and cortical STDP[J].Neural Netw,2013,43:114-124.
  • 9SONG S,MILLER K D,ABBOTT L F.Competitive hebbian learning through spike-timing-dependent synaptic plasticity[J].Nat Neurosci,2000,3(9):919-926.
  • 10QIM Y M,WANG J,MEN C,et al.Self-sustained firing activities of the cortical network with plastic rules in weak AC electrical fields[J].China Phys B,2012,21(7),078702:1-7.

二级参考文献54

  • 1王友仁,崔坚,游霞,黄三傲,姚睿.仿生硬件及其进展[J].中国空间科学技术,2004,24(6):32-42. 被引量:15
  • 2刘尚合.武器装备的电磁环境效应及其发展趋势[J].装备指挥技术学院学报,2005,16(1):1-6. 被引量:96
  • 3原亮,杨文飞,张政保,吴彩华.使用常规IC的演化硬件电路设计实例[J].计算机测量与控制,2006,14(11):1518-1520. 被引量:3
  • 4刘尚合,宋学君.静电及其研究进展[J].自然杂志,2007,29(2):63-68. 被引量:49
  • 5刘尚合.静电放电及静电防护的研究与进展[M]//徐匡迪,编.中国科学技术前沿(中国工程院版第6卷).北京:高等教育出版社,2003:167-202.
  • 6埃尔温·薛定谔.生命是什么[M].罗来鸥,罗辽复,译.长沙:湖南科学技术出版社,2007.
  • 7弗里德里希·克拉默.涨沌与秩序--生物系统的复杂结构[M].柯志阳,吴彤,译.上海:上海科技教育出版社,2000.
  • 8YAO X. Following the path of evolvable hardware[J]. Communications of the ACM, 1999,42(4):47-49.
  • 9YAO X, HIGUICHI T. Promises and challenges of evolvable hardware[J]. IEEE Trans. on Systems, Man and Cybernetics-Part C: Applications and Reviews ,1999 , 29 (1) : 87-97.
  • 10YUAN L. FPGA-based experimentation for TMR structure and evolutionary approach of self-recovering[C]. Procedings of the First International Conference on Maintenance Engineering, Chengdu, China, 2006 : 172-179.

共引文献55

同被引文献93

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部