期刊文献+

中文电子病历中否定术语检出方法研究

Method of Detection of Negative Terminology in Chinese Electronic Medical Record
原文传递
导出
摘要 对中文电子病历中的否定术语进行检测,可以为非结构化的电子病历文本的概念索引的建立提供依据。对于电子病历中术语的提取,在经典的正向最大匹配算法的基础上,结合互信息,可以有效地避免覆盖性歧义对提取结果的影响;对于否定语义的确定,在基于规则算法的基础上,结合词共现率模型,有效地降低了由于标点录入错误而出现假阳性术语的概率。通过实验表明,本文提出的方法相对于传统的基于规则的算法,阴性结果的预测值提高了6.85%。 The method for detecting the negative terms in Chinese electronic medical record(EMR)is useful in providing evidence for constructing concept index.In this respect,we adopted an improved method which combined maximum matching with mutual information in order to extract terms in EMRs.This method can overcome the influence of overlay ambiguity.In addition,for the determination of negative semantic,we also adopted an improved method which combined rule-based method with word co-occurrence.This new method can reduce the probability of appearance of false positive terms caused by punctuation input errors.The result showed that the negative predictive value is 7.85% higher than the rule-based method.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2015年第1期82-85,共4页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(81271668) 南通市社会事业科技创新与示范计划资助项目(HS2012045) 南通大学自然科学基金资助项目(11Z010) 江苏省高校自然科学基金资助项目(14KJB310014)
关键词 词共现 正向最大匹配 互信息 否定术语检出 word co-occurrence maximum matching method mutual information negation term detection
  • 相关文献

参考文献7

  • 1MUTAUK P G,DESHPANDE A,NADKARNI P M.Use of general-purpose negation detection to augment concept indexing of medical documents:a quantitative study using the UMLS[J].J Am Med Inform Assoc,2001,8(6):598-609.
  • 2CHAPMAN W W,BRIDEWELL W,HANBURY Pf et al.A simple algorithm for identifying negated findings and diseases in discharge summaries[J].J Biomed Inform,2001,34(5):301-310.
  • 3HUANG Y,LOWE H J.A novel hybrid approach to automated negation detection in clinical radiology reports[J].J Am Med Inform Assoc,2007,14(3):304-311.
  • 4CRUZ DIAZ N P,MANA LOPEZ M J,VAZQUEZ J M,et al.A machine-learning approach to negation and speculation detection in clinical texts[J].J Am Soc Inf Sci Tec,2012,63(7):1398-1410.
  • 5李昊旻,李莹,段会龙,吕旭东.中文病历文档术语提取和否定检出方法[J].中国生物医学工程学报,2008,27(5):716-721. 被引量:9
  • 6范雪莉,冯海泓,原猛.基于互信息的主成分分析特征选择算法[J].控制与决策,2013,28(6):915-919. 被引量:105
  • 7赵文清,侯小可.基于词共现图的中文微博新闻话题识别[J].智能系统学报,2012,7(5):444-449. 被引量:31

二级参考文献49

  • 1黄昌宁.统计语言模型能做什么?[J].语言文字应用,2002(1):77-84. 被引量:31
  • 2几个否定词的应用[J].实用诊断与治疗杂志,2005,19(6):423-423. 被引量:1
  • 3耿焕同,蔡庆生,赵鹏,于琨.一种基于词共现图的文档自动摘要研究[J].情报学报,2005,24(6):651-656. 被引量:15
  • 4瞿锋,陈纪元.汉语自动分词算法综述[J].福建电脑,2006,22(4):23-25. 被引量:8
  • 5Van Mulligen EM, Stare H, Van Ginneken AM. Clinical data entry. [A]. In : Proceedings/ AMIA Annual Symposium [C]. Orland : Hanley&Belfus, 1998.81 - 85.
  • 6Los RK, Van Ginneken AM, Van Der Lei J. OpenSDE: A strategy. for expressive and flexible structured data entry [J]. International Journal of Medical Informatics, 2005, 74:481 -490.
  • 7Tange HJ. Consultation of medical narratives in the electronic medical record [J]. Methods of Informatlon in Medicine, 1999,38 (4 - 5) :289 - 293.
  • 8Berg M, Langenberg C, Berg I, et al. Considerations for sociotechnical desgin: experiences with an electronic patient record in a clinical context [J]. International Journal of Medical Informatics, 1998,52(1-3):243 - 251.
  • 9Salton G. Automatic Text Processing : The Transformation, Analysis, and Retrieval of Information by Computer [M]. Boston : Addison-Wesley Longman Publishing Co Inc, 1989.
  • 10Aronson AR, Rindflesch TC, Browne AC. Exploiting a large thesaurus for information retrieval [ A]. In: Proceedings of RIAO [C]. New York: ACM, 1994. 197 - 216.

共引文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部