期刊文献+

IC-kmedoids:适用于RNA二级结构预测的聚类算法 被引量:1

IC-kmedoids:A Clustering Algorithm for RNA Secondary Structure Prediction
原文传递
导出
摘要 采用自由能方法预测RNA二级结构时,如何精确有效地从次优结构中筛选出真实的二级结构成为RNA结构预测中的关键。采用聚类技术对次优结构集合进行分析,可有效地提高预测结果的精度。本文利用RBP分数矩阵,提出一种基于增量中心候选集的改进k-medoids算法。它将随机选择初始中心并进行首次划分后以中心候选集逐一扩展的方式进行中心轮换,以降低算法的复杂度。实验表明,该算法能取得更高的CH值,且能有效地缩短计算时间。 Due to the minimum free energy model,it is very important to predict the RNA secondary structure accurately and efficiently from the suboptimal foldings.Using clustering techniques in analyzing the suboptimal structures could effectively improve the prediction accuracy.An improved k-medoids cluster method is proposed to make this a better accuracy with the RBP score and the incremental candidate set of medoids matrix in this paper.The algorithm optimizes initial medoids through an expanding medoids candidate sets gradually.The predicted results indicated this algorithm could get a higher value of CH and significantly shorten the time for calculating clustering RNA folding structures.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2015年第1期99-103,共5页 Journal of Biomedical Engineering
关键词 RNA二级结构 RBP分数 聚类算法 k-medoids算法 增量候选集 RNA secondary structure RBP score clustering algorithm k-medoids algorithm incremental candidate set
  • 相关文献

参考文献10

  • 1TURNER P C.Instant notes in molecular biology[M].Oxford:BIOS Scientific Publishers Limited,2000:360.
  • 2王镜岩,朱圣庚,徐长法.生物化学[M].第3版.北京:高等教育出版社,2008,656-659.
  • 3WOESE C,PACE N.The RNA World[M].New York:Cold Spring Harbor Laboratory Press,1993:91-117.
  • 4ZUKER M,STIEGLER D.Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information[J],Nucleic AcicLs Res,1981,9(1);133-148.
  • 5ZUKER M.On finding all suboptimal foldings of an RNA molecule[J].Science,1989,244(4900):48-52.
  • 6DING Y,CHAN C Y,LAWRENCE C E.Clustering of RNA secondary structures with application to messenger RNAs[J].J Mol Biol,2006,359(3):554-571.
  • 7AGIUS P,BENNETT K P,ZUKER M.Comparing RNA secondary structures using a relaxed base-pair score[J].RNA,2010,16(5):865-878.
  • 8CALINSKI T,HARABASZ J.A dendrite method for cluster analysis[J].Comm Statist Theo Meth,1974,3(1):1-27.
  • 9夏宁霞,苏一丹,覃希.一种高效的K-medoids聚类算法[J].计算机应用研究,2010,27(12):4517-4519. 被引量:47
  • 10PRUIT丁 K D,TATUSOVA T,MAGLOTT D R.NCBI ref erence sequences(RefSeq):a curated non-redundant sequence database of genomes,transcripts and proteins[J].Nucleic Acids Res,2007,35(Database issue):D61-D65.

二级参考文献10

  • 1HAN Jia-wei,KAMBER M.数据挖掘概念与技术[M].2版.北京:机械工业出版社,2008:263-266.
  • 2CHEN Xin-quan,PENG Hong,HU Jing-song.K-medoids substitution clustering method and a new clustering validity index method[C] //Proc of the 6th World Congress on Intelligent Control and Automation.2006:5896-5900.
  • 3HE Zeng-you.Farthest-point heuristic based initialization methods for K-modes clustering[EB/OL].(2006-10-10).http://arxiv.org/ftp/cs/papers/0610/0610043.pdf.
  • 4PARK H S,JUN C H.A simple and fast algorithm for K-medoids clustering[J].Expert Systems with Applications,2009,36(2):3336-3341.
  • 5PARDESHI B,TOSHNIWAL D.Improved K-medoids clustering based on cluster validity index and object density[C] //Proc of the 2nd IEEE International Advance Computing Conference.2010:379-384.
  • 6GAO Dan-yang,YANG Bing-ru.An improved K-medoids clustering algorithm[C] //Proc of the 2nd International Conference on Computer and Automation Engineering(ICCAE).2010:132-135.
  • 7BARIONI C N M,RAZENTE H L,TRAINA A J M,et al.Accelerating K-medoid-based algorithms through metric access methods[J].The Journal of Systems and Software,2008,81(3):343-355.
  • 8PARTYKA J,KHAN L,THURAISINGHAM B.Semantic schema matching without shared instances[C] //Proc of IEEE International Conference on Semantic Computing.2009:297-302.
  • 9DataSet[EB/OL].(2010).http://archive.ics.uci.edu/ml/datasets.html.
  • 10宗瑜,金萍,李明楚.BK-means:骨架初始解K-means[J].计算机工程与应用,2009,45(14):49-52. 被引量:3

共引文献46

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部