期刊文献+

基于改进的SUSAN算法的火焰图像边缘检测研究 被引量:4

Research on flame image edge detection base on improved SUSAN algorithm
下载PDF
导出
摘要 火焰图像边缘检测是火焰图像检测系统研究的基础。将SUSAN算法引入到火焰边缘检测之中,并针对SUSAN算法中人为设定阈值在一些特殊场合下无法有效提取图像边缘的问题和运算量过大不适用于实时场景的缺点,通过引入目标区域判别和自适应阈值选取,提出一种改进SUSAN算法,解决上述两个缺陷并对该算法进行仿真。实验结果表明,该算法可以有效地提高火焰检测的准确率,排除干扰源,并具有良好的自适应性。 The flame image edge detection is the base to research the flame image detection system. The flame image edge detection model of an improved SUSAN algorithm is proposed in this paper. The SUSAN algorithm has some drawbacks: 1) the image edge cannot be effectively extracted in some special occasions due to the man-made threshold setting; 2) the too large computation quantity makes it not to be applied to the real-time occasions. Therefore, an improved SUSAN algorithm is proposed, by which the target area distinguishing and adaptive threshold selection are introduced to overcome the shortcomings of SUSAN algorithm. Experimental results show that the algorithm proposed in this paper can effectively improve the accuracy of flame image edge detection, eliminate the interference sources, and has perfect adaptability.
作者 夏凯
出处 《现代电子技术》 北大核心 2015年第5期58-61,共4页 Modern Electronics Technique
基金 教育部高等学校博士学科点专项科研基金(20126120110008) 教育厅提供专项科研项目(2013JK1144) 西安建筑科技大学校青年基金(QN1429)
关键词 火焰图像 边缘检测算子 SUSAN算法 自适应阈值选取 flame image edge detection operator SUSAN algorithm adaptive threshold selection
  • 相关文献

参考文献11

  • 1翁木云,何明一.图像综合特征及其在图像检测与匹配中的应用[J].中国图象图形学报,2007,12(1):121-126. 被引量:18
  • 2ADKINS C W. Users guide for fire image analysis system-Ver- sion 5.0: A Tool for measuring fire behavior characteristics [M]. Asheville, NC, USA: Department of Agric, Forest Ser- vice, 1995.
  • 3BHEEMUL H C, LU G, AND YAN Y. Three-dimensional visua- lization and quantitative characterization of gaseous flames [J]. Meas Sci Technol, 2002, 13(10) : 1643-1650.
  • 4TOREYIN B U, CETIN A E. Online detection of fire in video [C]//IEEE Conference on CVPR. [S.l.]: IEEE, 2007: 1-5.
  • 5CHACON-MURGUIA M 1, PEREZ-VARGAS F J. Thermal video analysis for fire detection using shape regularity and intensity saturation features [C]// Lecture Notes in Computer Science on MCPR.[S.I.]: [s.n.], 2011: 118-126.
  • 6RAZMI S M, SAAD N, ASIRVADAM V S. Vision-based flame analysis using motion and edge detection [C]//2010 Inter- national Conference on Intelligent and Advanced Systems (1CIAS). Kuala Lumpur, Malaysia: ICIAS, 2010: 1-4.
  • 7SMITH S M, BRADY J M. SUSAN: a new approach to low level image processing [J]. International Journal of Computer Vision, 1997, 23(1) : 45-78.
  • 8林鹏岳,李玲玲,李翠华.一种改进的快速SUSAN角点检测算法[J].计算机与现代化,2010(2):66-68. 被引量:18
  • 9陈志方,张艳宁,杨将林,孙瑾秋.一种改进的SUSAN算法[J].微电子学与计算机,2007,24(11):142-144. 被引量:13
  • 10马桂珍,房宗良,姚宗中.SUSAN边缘检测算法性能分析与比较[J].现代电子技术,2007,30(8):189-191. 被引量:32

二级参考文献32

  • 1李璟,朱善安,Bin He.医学图像分割技术[J].生物医学工程学杂志,2006,23(4):891-894. 被引量:18
  • 2李俊平,周振环.提取图像边界角点的新方法[J].微电子学与计算机,2006,23(11):188-190. 被引量:4
  • 3马桂珍,房宗良,姚宗中.SUSAN边缘检测算法性能分析与比较[J].现代电子技术,2007,30(8):189-191. 被引量:32
  • 4Wang Mao-jun, Wu Wen-yen, Huang Liang-kai ,et al. Corner detection using bending value[ J]. Pattern Recognition Letters, 1995,16 ( 6 ) : 575-583.
  • 5Mokhtarian F, Suomela R. Robust image comer detection through curvature scale space [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20 ( 12 ) : 1376-1381.
  • 6Singh A, Shneier M. Grey level comer detection: A generalization and a robust real time implementation [ J ]. Computer Vision, Graphics and Image Processing, 1990,51 ( 1 ) :54-69.
  • 7Shen Fei, Wang Han. Real time gray level corner detector [ C ]//Proceedings of the 6th International Conference on Control, Automation, Robotics and Vision. Singapore, 2000: 1-6.
  • 8Harris C, Stephens M J. A combined comer and edge detector[ C]//Proceedings Fourth Alvey Vision Conference. Manchester, U. K, 1988.
  • 9Smith M, Brady J M. SUSAN-A new approach to low level image processing[ J]. International Journal of Computer Vision, 1997 ( 1 ) :45-78.
  • 10Rosten E, Drummond T. Fusing points and lines for high performance tracking[ J ]. IEEE International Conference on Computer Vision, 2005,2 (10) : 1508-1511.

共引文献71

同被引文献49

引证文献4

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部