期刊文献+

超音速混合层着火距离的一种理论预测方法 被引量:2

A theoretical prediction method of ignition distance in supersonic mixing layer
下载PDF
导出
摘要 提出了超音速混合层着火距离的一种理论预测方法。基于超音速混合层来流热力学参数和考虑粘性加热及可压缩性效应的修正温度,定义了密闭容器反应系统。耦合详细化学反应机理获得该系统的着火延迟时间,并基于超音速混合层的平均流动速度获得了着火距离。其预测结果与高精度数值模拟结果相符,同时该理论预测方法能够从物理上很清晰地解释已有研究中所观察到的着火距离随相关影响因素的变化规律。同时,该预测方法为定性认识超音速着火距离及其变化规律提供了简易可行的途径,为耦合有限试验和数值模拟结果实现着火距离的定量预测提供了理论支撑。 A theoretical method is proposed for the prediction of the ignition distances in the supersonic mixing layer. Based on the inlet thermodynamics parameters and the correction temperature related to viscous heating and compressibility effect, a closed container reaction system is defined. The ignition delay time of the closed container reaction system are obtained through coupling the detailed chemical reaction mechanism. The ignition distance is got according to the mean flow velocity of the supersonic mixing layer. The ignition distances obtained by the theoretical prediction method agree well with those by CFD. The variation of the ignition distances with the related influence factors, which is observed in the previous studies, can be clearly explained in physics by the present theoretical prediction method. Besides, the theoretical prediction method for the ignition distance is a simple way for the qualitative understanding of the supersonic ignition distance and its variation rule, and also provides a theoretical basis for the implementation of quantitative prediction of ignition distance through coupling the limited experimental results with numerical simulation ones.
出处 《火箭推进》 CAS 2015年第1期50-55,共6页 Journal of Rocket Propulsion
关键词 超音速平面混合层 着火距离 理论预测 数值计算 supersonic plane mixing layer ignition distance theoretical prediction numerical simulation
  • 相关文献

参考文献12

  • 1孙明波,梁剑寒,金亮,侯中喜,王振国.二维超声速混合层的大涡模拟[J].国防科技大学学报,2005,27(5):86-90. 被引量:6
  • 2IMH G, CHAO B H, BECHTOLD J K, et al. Analysis ofthermal ignition in the supersonic mixing layer [J]. AIAAJournal, 1994,32(2): 341-349.
  • 3JU Y, NIIOKA T. Reduced kinetic mechanism of ignitionfor nonpremixed hydrogen/air in a supersonic mixinglayer [J]. Combust Flame, 1994,99(2): 240-246.
  • 4NISHIOKA M, LAW C K. A numerical study of ignitionin the supersonic hydrogen/air laminar mixing layer [J].Combust Flame, 1997, 108(1/2): 199-219.
  • 5TAHSINIA M. Turbulence and additive effects on ignitiondelay in supersonic combustion[J]. PI Mech Eng G-J AER,2013, 227(1): 93-99.
  • 6REN Y X, LIU M, ZHANG H. A characteristic-wisehybrid compact-WENO scheme for solving hyperbolicconservation laws [J]. Journal of Comput Phys, 2003,192(2): 365-386.
  • 7EBERHARDT S,IMLAY S. Diagonal implicit scheme forcomputing flows with finite rate chemistry [J]. Journal ofThermophys Heat Tr,1992,6(2): 208-216.
  • 8WANG C S, OSHER S. Efficient implementation ofessentially non-oscillatory shock-capturing schemes [J].Journal of Comput Phys, 1988, 77(2): 439-471.
  • 9薛淑艳,张会强,王希麟.超音速平板混合层被动标量的数值模拟[J].工程热物理学报,2009,30(8):1423-1426. 被引量:4
  • 10ZHANG Y L, WANG B, ZHANG H Q. The shock waverefraction in supersonic planar mixing layers [J]. ChinesePhys Letters, 2013, 30(8): 22-28.

二级参考文献16

  • 1Papamoschou D, Roshko A. The Compressible Turbulent Shear Layer: An Experimental Study. J. Fluid Mech., 1988, 197:435-477.
  • 2Elliot G S, Samimy M. Compressibility Effects in Free Shear Layers. Phys. Fluids A, 1990, 2(7)" 1231-1240.
  • 3Ribault C L. Large Eddy Simulation of Passive Scalar in Compressible Mixing Layers. Heat and Mass Transfer, 2008, 51:3514-3524.
  • 4Sankavan V, Menon S. LES of Scalar Mixing in Super- Sonic Mixing Layers. Proceedings of the Combustion Institute, 2005, 30:2835-2842.
  • 5Clemens N T, Mungal M G. Large-Scale Structure and Entrainment in the Supersonic Turbulent Mixing Layer. J. Fluid Mech., 1995, 284:171-216.
  • 6Ren Yuxin, Liu Miao'er, Zhang Hanxin. A Characterist- Icwise Hybrid Compact-Weno Scheme for Solving Hy-Perbolic Conese-Rvation Laws. J. Comput. Phys., 2003, 192:365-386.
  • 7Huson D A, Long L N, Morris P J. Computation of a Confined Compressible Mixing Layer. AIAA-95-2173, 1995.
  • 8Barber T J, Chiappetta L M, et al. An Assessment of Parameters Influencing the Prediction of Shear Layer Mixing[J].Journal of Propulsion and Power, 15(l):45-53, 1999.
  • 9Georgiadis N J, Yoder D A, DeBonis J R. A Comparison of Three Navier-Stokes Solvers for Exhaust Nozzle Flowfields[R]. AIAA Paper 99-0748, 1999.
  • 10Goebel S G ,Dutton J C .An Experimental Study of Turbulent Compressible Mixing Layers[J]. AIAA Journal,29(4):538-546, 1991.

共引文献8

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部