期刊文献+

Markov链中的转移过程张量与超随机张量

Transition Process Tensor and Super Stochastic Tensor in Markov Chain
下载PDF
导出
摘要 研究了一类特殊张量及其简单性质.从Markov链的转移概率矩阵出发,考虑到多步转移概率矩阵中所存储的信息仅表示从状态i经n步到达状态j的总概率,而无法从中直接读出转移过程途经各状态i1,i2,…,im-1的概率,因此提出了可用张量来存储相应的信息,称之为转移过程张量.在此基础上提出了超随机张量的概念,并根据Chapman-Kolmogorov方程证明了某些转移过程张量即为超随机张量.此外,研究了超随机张量的一些简单性质. A special kind of tensor and its simple nature were studied and proved.Since the information stored in n-step transition probability matrix only expresses the total probability from state i to jin exactly nsteps,and cannot give the probability of going fromi to j via the states of i1,i2,…,im-1,a concept of transition process tensor was proposed to store these probabilities.Moreover,it also gave the definition of super stochastic tensor,according to Chapman-Kolmogorov equations,it was proved that some transition process tensors were super stochastic tensors.Some properties of super stochastic tensor were also studied.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2015年第1期12-15,21,共5页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金青年基金项目资助(11101028) 北京市高校青年英才计划
关键词 MARKOV链 转移概率矩阵 张量 超随机张量 Markov chain transition probability matrix tensor super stochastic tensor
  • 相关文献

参考文献16

  • 1Qi Liqun. Eigenvalues of a real supersymmatric tensor [J]. Journal of Symbolic Computation, 2005, 40 (1) : 1302-1324.
  • 2Qi Liqun. Rank and eigenvalues of a surpersymmetric tensors, the multivariate homogeneous polynomial and the algebraic hypersurface it defines [J]. Journal of Symbolic Computation, 2006, 41(1) : 1309-1327.
  • 3Chang K C, Pearson K, Zhang T. On eigenvalue prob- lems of real symmetric tensors[-J]. J Math. Anal. Ap- pl., 2009, 350(1): 416-422.
  • 4Chang K C, Pearson K, Zhang T. Primitivity, the convergence of the NQZ method, and the largest ei- genvalue for nonnegative tensors[J]. SIAM J. Matrix Anal. Appl. , 2011, 32(1).- 806-819.
  • 5Yang Qingzhi, Yang Yuning. Further results for per- ron-frobenius theorem for nonnegative ten-sors 2[J]. Society for Industrial and Applied Mathematrics, 2011, 32(4): 1236-1250.
  • 6Chang K C, Pearson K, Zhang T. Perron-frobenius theorem for nonnegative tensor[J]. Cornmura Math. Sci. , 2008, 6(2): 507-520.
  • 7Yang Yuning, Yang Qingzhi. Further results for per- ron-frobenius theorem for nonnegative ten-sors[J]. So- ciety for Industrial and Applied Mathematrics, 2010, 31(5) : 2517-2530.
  • 8陆大金.随机过程及其应用[M].北京:清华大学出版社,2012:176-238.
  • 9Ng M, Qi Liqun, Zhou Guanglu. Finding the largest eigenvalue of a non-negative tensor[J]. SIAM J. Ma- trix Anal. Appl. , 2009, 31(3): 1090-1099.
  • 10Chang K C, Qi Liqun, Zhou Guanglu. Singular val- ues of a real rectangular tensor[-J. Math. Anal. Ap-pl., 2010, 370(1) 284-294.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部