期刊文献+

一种新的烧蚀热响应算法在质量估算中的应用 被引量:3

Application of a New Ablation Thermal Response Algorithm in Mass Estimation
下载PDF
导出
摘要 针对预测飞行器再入过程中气动热流引发的烧蚀热响应导致热防护罩表层材料质量损耗的问题,研究了热防护罩的几何模型和烧蚀质量估算的方法,通过建立三自由度再入轨迹动力学方程,应用修正的牛顿流体理论计算气动系数,以及Detra-Kemp-Riddell和Tauber-Sutton理论计算驻点热流密度和热辐射,利用一维非线性热传导方程模拟了碳化材料的烧蚀过程,提出了基于Newton-Raphson和TDMA的烧蚀热响应算法估计飞行器热防护罩质量损耗的方法。通过分析,实现了再入全过程热防护材料烧蚀深度连续动态变化的预测,能够有效替代热平衡积分法,估算的烧蚀质量为优化热防护罩的几何模型和再入轨迹提供了参考依据。 The mass losses of heat shield surface materials subject to the ablation thermal response resulting from aerodynamic heat flux can be efficiently estimated in the reentry process. A geometric model and ablation mass estimation method of heat shields was studied. The three degree of freedom (3DOF) reentry trajectory dynamics equation was established. The modified Newtonian flow theory, Detra-Kemp-Riddell and Tauber-Sutton theory were adopted respectively to calculate the aerodynamic parameters, stagnation heat flux and heat radiation. A one-dimensional nonlinear heat conduction model was employed to simulate the process of charring material ablation. Based on the Newton Raphson and TDMA ablation thermal response algorithm, an approach was presented to estimate the mass losses of vehicle heat shields. The results of ablation prediction show that the continuous dynamic change of the surface material depth can be realized by analyzing the ablation thermal response algorithm. The presented approach can be an available surrogate of heat balance integral (HBI) method. The estimated ablation mass can help to optimize the geometric model of heat shields and reentry trajectory.
出处 《中国空间科学技术》 EI CSCD 北大核心 2015年第1期66-74,共9页 Chinese Space Science and Technology
基金 国家自然科学基金(61304132) 河南省基础与前沿技术研究项目(132300410475)资助项目
关键词 烧蚀热响应 热防护罩 再入飞行器 质量损耗 有限元 Ablation thermal response Heat shield Reentry vehicle Mass losses Finite element method
  • 相关文献

参考文献21

  • 1GREATHOUSE J S,KIRK B S,LILLARD R P,et al. Crew exploration vehicle (CEV) crew moduleshape selection and CEV aeroscience project overview [C]. 45th AIAA Aerospace Sciences Meeting andExhibit,Reno Nevada, 2007 : 1-43.
  • 2BERRY S A,HORVATH T J,LILLARD R P, et al. Aerothermal testing for project orion crew explorationvehicle [C]. 41th AIAA Thermophysics Conference, San Antonio, 2009 : 1-15.
  • 3ROBINSON J S,WURSTER K E,MILLS J C. Entry trajectory and aeroheating environment definitionfor capsule-shaped vehicles [J], Journal of Spacecraft and Rockets,2009,46(1) : 74-86.
  • 4OTERO R E,BRAUN R D. The planetary entry systems synthesis tool: a conceptual design and analysis toolfor EDL systems [C], 2010 IEEE Aerospace Conference,Big Sky, MT, IEEE,2010: 6-13.
  • 5ANDERSON J D. Hypersonic and high temperature gas dynamics [M]. New York: McGraw-Hill, 1989.
  • 6WRIGHT M, LOOMIS M,PADADOPOULOS P. Aerothermal analysis of the project fire II afterbodyflow [J], Journal of Thermophysics and Heat Transfer, 2003? 17 (2) : 240-249.
  • 7LARSON W J,PRANKE L K. Human spaceflight mission analysis and design (space technology Series) [M].New York: McGraw-Hill, 1999.
  • 8GOGU C,HAFTKA R T,RAO A V. Aeroassisted orbital transfer trajectory optimization consideringthermal protection system mass [J]. Journal of Guidance,Control,and Dynamics,2009,32 (3): 927-937.
  • 9BERTIN J J. Hypersonic aerothermodynamics [C]. AIAA Education Series, AIAA, Washington, D. C.,1994.
  • 10CANDANE S R,BALAJI C,VENKATESHAN S P. A comparison of quasi one-dimensional and two-dimensionalablation models for subliming ablators [J]. International Journal of Heat Transfer Engineering,2009,30(3):229-236.

二级参考文献16

  • 1Rochelle W, Kinsey R E, Reid E A, et al. Spacecraft or bital debris reentry aerothermal analysis[C]//Proceedings of the Eighth Annual Thermal and Fluids Analysis Work shop:Spacecraft Analysis and Design. Houston: NASA/ Johnson Space Center, 1997: 1-14.
  • 2Neyret P, Betaharon K, Dest L, et al. The Intelsat Ⅵ A spacecraft[R]. AIAA 1992-1946, 1992.
  • 3Anonymous. DAS user's guide, version 2.0[R]. NASA, JSC 64047, 2007.
  • 4Bouslog S A, Ross B P, Madden C B. Space debris reentry riskanalysi[R]. AIAA-1994 0591, 1994.
  • 5Fritsche F,, Klinkrad H, Kashkovsky A, et al. Spacecraft disintegration during uncontrolled atmospheric re-entry [J]. Acta Astronautica, 2000, 47(2-9): 513-522.
  • 6Lips T, Fritsche B. A comparison of commonly used reentry analysis tools[J]. Acta Astronautica, 2005, 57 (2-8): 312-323.
  • 7Tewari A. Entry trajectory model with thermomechanical breakup[J]. Journal of Spacecraft and Rockets, 2009, 46 (2): 299-306.
  • 8Bird G A. Molecular gas dynamics and the direct simula tion of gas flows[M]. New York, Oxford University Press, 199:1- 4.
  • 9Tsien H S. Superaerodynamics[J]. Journal of the Aeronautical Sciences, 1946, 13:653-664.
  • 10Anderson J D. Hypersonic and high temperature gas dy namics[M]. Reston, VA: American Institute of Aeronau tics and Astronautics, 2000:45-300.

共引文献10

同被引文献20

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部