期刊文献+

L_1范数支持向量机在代谢组学中的应用

L_1-Norm Support Vector Machine and Its Application in Metabonomics
下载PDF
导出
摘要 代谢组学是关于生物体内源性代谢物质的整体及其变化规律的科学,也是一个数据密集型的研究领域,由此使得模式识别在代谢数据处理中有重要作用.L1范数支持向量机(L1-Norm Support Vector Machines,L1-norm SVMs)作为在模式识别领域中准确、稳健的方法,在代谢组学中的应用较少.该文应用L1-norm SVM方法对小鼠感染血吸虫后的代谢数据进行了分析,分析结果显示L1-norm SVM在聚类与特征选择方面具有优势,并表明它在代谢组学领域的应用有着潜力和前景. Metabonomics analyzes metabolite profiles in living systems and its dynamic responses to changes of endogenous (i.e., physiology and development) and exogenous (i.e., environment and xenobiotics) factors. Pattern recognition plays an important role in data-processing in metabonomic. Lrnorm support vector machine (Lrnorm SVM) is an accurate and robust method in pattern recognition, but not widely used in metabonomics. In this study, we used Lrnorm SVM to analyze metabonomic data obtained from mice infected by schistosomiasis. It was shown that Ll-norm SVM had better performance than orthogonal partial least squares (O-PLS) in terms of clustering and feature selection. The results also showed that support vector machines have great potential and prospects for data-processing in metabonomics.
出处 《波谱学杂志》 CAS CSCD 北大核心 2015年第1期67-77,共11页 Chinese Journal of Magnetic Resonance
基金 国家青年自然科学基金资助项目(21105115)
关键词 模式识别 L1范数支持向量机(L1-norm SVM):正交偏最小二乘(O-PLS)代谢组学 核磁共振(NMR) pattem recognition, Ll-nonn support vector machine, orthogonal partial leastsquares, metabonomics, nuclear magnetic resonance
  • 相关文献

参考文献30

  • 1郭宾,戴仁科.代谢组学及其研究策略和分析方法进展[J].中国卫生检验杂志,2007,17(3):554-563. 被引量:34
  • 2唐惠儒,王玉兰.代谢组研究[J].生命科学,2007,19(3):272-280. 被引量:28
  • 3Nicholson J K, Lindon J C, Holmes E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR speclroscopic data[J]. Xenobiotica, 1999, 29(11): 1 181-1 189.
  • 4许国旺,杨军.代谢组学及其研究进展[J].色谱,2003,21(4):316-320. 被引量:94
  • 5邱玉洁,夏圣安,叶朝辉,刘买利.生物医学核磁共振中的模式识别方法[J].波谱学杂志,2005,22(1):99-111. 被引量:16
  • 6Hastie T, Tibshirani R, Friedman J, et al. The elements of statistical learning: data mining, inference and prediction[J]. The Mathematical Intelligencer, 2005, 27(2): 83-85.
  • 7Bradley P S, Mangasarian O L. Feature selection via concave minimization and support vector machines[J]. International Council for Machinery Lubrication, 1998, 98: 82-90.
  • 8Li T, Zhang C L, Ogihara M. A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression[J]. Bioinformatics, 2004, 20(15): 2 429-2 437.
  • 9Guyon I, Elisseeff A. An introduction to variable and feature selection[J]. The Journal of Machine Learning Research, 2003 3:1 157-1 182.
  • 10张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272

二级参考文献362

  • 1杨军,宋硕林,Jose Castro Perez,Robert S.Plumb,许国旺.代谢组学及其应用[J].生物工程学报,2005,21(1):1-5. 被引量:52
  • 2李晶,吴晓健,刘昌孝,元英进.代谢组学研究中数据处理新方法的应用[J].药学学报,2006,41(1):47-53. 被引量:43
  • 3唐惠儒,王玉兰.代谢组学:一个迅速发展的新兴学科(英文)[J].生物化学与生物物理进展,2006,33(5):401-417. 被引量:86
  • 4Frontzek T, Navin Lal T, Eekmiller R. Predicting the Nonlinear Dynamics of Biological Neurons Using Support Vector Machines with Different Kernels. In: Proc of the International Joint Conference on Neural Networks, Washington, D C, USA, 2001, 2:1492- 1497.
  • 5Vapnik V N. The Nature of Statistical Learning Theory. Springer,N Y, 1999.
  • 6Boser B E, Guyon I M, Vapnik V N. A Training Algorithm for Optimal Margin Classifiers . In: Haussler D, ed. Proc of the 5th Annual ACM Workshop on Learning Theory, Pittsburgh, ACM Press, 1992, 144-152.
  • 7Muller K R, Smola A J, et al. Predicting Time Series with Support Vector Machines. In: Gerstner W, Germond A, et al, eds. Proc of the International Conference on Artificial Neural Networks,Lausaunne, Switzerland, Springer, 1997, 999-1004.
  • 8Mukherjee S, Osuna E, Girosi F. Nonlinear Prediction of Chaotic Time Series Using a Support Vector Machine. In: Principe J, Gile L, Morgan N, Wilson E, eds. Neural Networks for Signal Processing VII - Proceedings of the 1997 IEEE Worshop, New York,1997, 511-520.
  • 9Drucker H, Burges C J C, Kaufman L, Smola A, Vapnik V N.Support Vector Regression Machines. In: Mozer M, Jordan M,Petsche T, eds. Advances in Neural Information Processing Systerns, 9, Cambridge, MA, MIT Press, 1997, 155- 161.
  • 10Vapnik V N, Golowich S, Smola A. Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing. In: Mozer M, Jordan M, Petsche T, eds. Advances in Neural Information Processing Systems, 9, Cambridge, MA, MIT Press, 1997, 281-287.

共引文献2477

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部