期刊文献+

XML图书搜索中基于用户社会关系的查询推荐方法 被引量:2

QUERY RECOMMENDATION METHOD IN XML BOOK SEARCH BASED ON USERS' SOCIAL RELATIONS
下载PDF
导出
摘要 基于关键词的图书搜索系统由于用户输入查询词的模糊性和简单性往往需要利用查询推荐技术对查询词进行扩展。目前的图书查询推荐方法不能辨别出不同用户在不同时期的图书请求意图和兴趣。提出一种基于用户社会关系的查询推荐方法,首先通过分析用户个人资料信息建立用户社会关系对象集合;其次获取用户社会关系对象对图书的标记词,计算输入查询词与标记词之间的共现率并建立用户社会关系标记词推荐集合,选取与查询词共现率最高的标注词进行查询词扩展。在实际图书数据集上的实验表明,该方法大大提高了查询结果的NDCG@10值,提高用户的满意度,表明该方法具有可行性。 Since the query words inputted by the user are fuzzy and simple, the keyword-based book search system usually requires using query recommendation technology to expand the querying words. So far the book search query recommendation methods could not distinguish different request intentions and the interests of different users in different periods. This paper presents a query recommendation method, which is based on users' social relations. First, it creates a collection of objects in regard to users' social relations by analysing the information of users profiles; Secondly, it obtains the book mark words marked by users social relations objects, and then calculates the rate of co-occur- rence between the query word inputted and the mark words, and establishes the collection of the recommended users social relations mark words; At last, it selects the mark words with the highest rate of co-occurrence as the words for query expansion. Experiment on the actual book dataset shows that this method greatly improves the nDCG@ 10 values of the query results and users' satisfaction, this means that the method is feasible.
出处 《计算机应用与软件》 CSCD 2015年第2期33-36,共4页 Computer Applications and Software
基金 2012年河北省教育厅指导性计划项目(Z2012038)
关键词 XML图书搜索 查询推荐用户社会关系 兴趣对象标注词 共现率 XML book search Query recommendation Users' social relations Interested object Mark word Rate of co-occurrence
  • 相关文献

参考文献10

  • 1Dian F B, Paskalis M L, Khodra. Sense disambiguation in information retrieval using query expansion [ C ]//2011 International Conference on Electrical Engineering and Informatics, Indonesia ,2011.
  • 2宗莲松.基于改进模糊集合方法的用户查询词扩展的信息检索[J].西华大学学报(自然科学版),2012,31(4):42-48. 被引量:1
  • 3Mauro Dragoni, Celia DA Costa Pereia, Andrea G B Tettamanzi. A con- ceptual representation of documents and queries for information retriev- al systems by using light ontologies [ J 1. Expert Systems with Applica- tions,2012,39:10376 - 10388.
  • 4Lourdes Araujo, Hugo Zaragoza ,Jose R perez-aguera, et al. Structure of morphologically expanded queries : A genetic algorithm approach [ J ]. Data & Knowledge Engineering,2010,26:279-289.
  • 5Romain Deveaud,Eric Sanjuan, Partice Bellot. Social recommendation and external resources for book search[ C ]//INEX 2011 : Social Book Search Track. Rome, Italy,2012.
  • 6Alejandra, Seguran, Salvador-Sanchez, et al. An empirical analysis of ontology-based query expansion for learning resource searches using merlotand the gene ontology[ J]. Knowledge-Based Systesms, 2011,24 (1) :119-135.
  • 7朱鲲鹏,魏芳.基于用户日志挖掘的查询扩展方法[J].计算机应用与软件,2012,29(6):113-117. 被引量:12
  • 8王力,李培峰,朱巧明.一种面向主题的关键词查询扩展方法[J].计算机应用与软件,2011,28(12):29-31. 被引量:3
  • 9RIEZLERS, VASSERMANA, TSOCHANTARIDISI, et al. Sat Tistieal machine translation for query expansion in answer retirevl a[ C ]//Pro- ceedings of the 45th Annual Meting of the Asscoiation For Computation- al Linguistics. Prague, Czech Republic : Association for Computationl a Linug istics ,2007:464 - 471.
  • 10Stefan Buttcher, Charles L A Clarke, Gordon V Cormack. Information Retrieval Implementing and Evaluating Search Engines [M].北京:机械工业出版社,2012:280-313.

二级参考文献22

  • 1张敏,宋睿华,马少平.基于语义关系查询扩展的文档重构方法[J].计算机学报,2004,27(10):1395-1401. 被引量:55
  • 2丁国栋,白硕,王斌.一种基于局部共现的查询扩展方法[J].中文信息学报,2006,20(3):84-91. 被引量:44
  • 3马晖男,吴江宁,潘东华.一种基于同义词词典的模糊查询扩展方法[J].大连理工大学学报,2007,47(3):439-443. 被引量:17
  • 4Wen J R, Nie J Y, Zharrg H J. Clustering user queries of a search en- gine [ C ]//Proceedings of the lOth International World Wide Web Con-ference, New York, ACM Press ,2001 : 162 - 168.
  • 5Liu S, Liu F, Yu C, et al. An effective approach to document retrieval via utilizing WordNet and recognizing phrases [ C ]//Proceedings of the 27th annual international Conference on Research and development in Information Retrieval ,2004:266 - 272.
  • 6Wen J R, Nie J Y, Zhang H J. Query clustering using user logs [ J ]. ACM Transactions on Information Systems,2002,20( 1 ) :59- 81.
  • 7Zhang Z, Nasraoui O. Mining search engine query logs for query recom- mendation[ C]//Pmceedings of the. 15th international World Wide Web conference ,2006 : 1039 - 1040.
  • 8Billerbeck B, Scholer F,Williams H E, et al. Query expansion using as- sociated queries[ C ]//Proceedings of the 12th international conference on Information and knowledge management ,2003:2- 9.
  • 9Cover T, Thomas J. Elements of Information Theory [ M ]. New York: John Wiley and Sons,1991.
  • 10搜狗日志库[OL].http://www.sogou.com/labs/.

共引文献13

同被引文献21

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部