期刊文献+

一种基于ICFV的云计算数据库负载访问优化方法 被引量:3

A LOAD ACCESS OPTIMISATION METHOD OF CLOUD COMPUTING DATABASE BASED ON ICFV
下载PDF
导出
摘要 为了优化云计算服务器数据库负载访问性能,采用基于特征向量的增量聚类方法(ICFV)对数据库负载访问性能进行优化。ICFV算法提取数据库负载的特征向量然后进行聚类划分,它与传统的基于负载特征向量聚类不同,采用的是增量聚类方法,不需要对所有负载集合进行重新中心距离计算,从而优化特征向量维数。通过实验证明,采用ICFV算法实现数据库负载自适应优化,提高负载聚类效率。在负载个数相同时,负载类别的增加对云计算数据库的访问性能影响较小,且ICFV方法运算效率优于CFV方法。 In order to optimise the access performance of cloud computing server database load, the incremental clustering method based on feature vector (ICFV) is used to optimise it. ICFV algorithm extracts the feature vectors of database load and then clusters and partitions them. Differing from traditional load feature vector-based clustering, it uses incremental clustering method, without the need of calculating the central distance once again on all load collections, so that optimises the dimensionalities of the feature vector. It is proved through experiment that the use of ICFV algorithm realises the adaptive optimisation of database load, and improves the efficiency of load clustering. When the load numbers are the same, the increase in load types has little impact on the access performance of cloud computing database, and the ICFV method has higher operation efficiency over the CFV method as well.
作者 邱宏 缪庆嵘
出处 《计算机应用与软件》 CSCD 2015年第2期41-44,共4页 Computer Applications and Software
关键词 云计算 数据库负载 CFV ICFV 访问优化 Cloud computing Database load CFV ICFV Access optimisation
  • 相关文献

参考文献8

二级参考文献30

  • 1张建萍,刘希玉.基于聚类分析的K-means算法研究及应用[J].计算机应用研究,2007,24(5):166-168. 被引量:124
  • 2张靖,姚珍,唐雪飞.基于决策树的不完整数据的处理[J].电子科技大学学报,2007,36(1):116-118. 被引量:6
  • 3袁方,周志勇,宋鑫.初始聚类中心优化的k-means算法[J].计算机工程,2007,33(3):65-66. 被引量:154
  • 4周明 孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1996..
  • 5Niu B,Martin P,Powley W,et al.Workload adaptation in autonomic DBMSs[C]//Proceedings of CASCON 2006,Toronto,Canada,2006: 161-173.
  • 6MANEVITZ L M,YOUSEF M.Oneclass SVMs for document classification[J].Journal of Machine Learning Research,2001,2(22):139-154.
  • 7NIU Bao-ning,MARTIN P,POWLEY W,et al.Workload adaptation in autonomic DBMSs[C]// Proc of CASCON.Toronto:ACM Press,2006:161-173.
  • 8SCHROEDER B,HARCHOLBALTER M,IYENGAR A,et al.Achieving classbased QoS for transactional workloads[C]// Proc of the 22nd International Conference on Data Engineering (ICDE'06).Washington DC:IEEE Computer Society,2006:153-165.
  • 9DUAN Fu,WANG Yu-xing,ZHAO Chan-chan,et al.Research and implementation on middleware of database workload autonomic adaptation[C]// Proc of the 4th International Conference on Intelligent Information Hiding and Multimedia Signal Processing.Washington DC:IEEE Computer Society,2008:1478-1481.
  • 10QIANG Yan,LI Yi,CHEN Jun-jie.The workload adaptation in autonomic DBMSs based on layered queuing network model[C]// Proc of the 2nd International Workshop on Knowledge Discovery and Date Mining.Washington DC:IEEE Computer Society,2009:781-785.

共引文献10

同被引文献28

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部