期刊文献+

基于SURF特征点的多人脸跟踪方法研究 被引量:2

RESEARCH ON MULTI-FACE TRACKING METHOD BASED ON SURF FEATURE POINTS
下载PDF
导出
摘要 针对视频序列中多目标人脸跟踪问题,提出一种基于SURF(Speed-Up Robust Features)特征和KLT(Kanade-Lucas-Tomasi)匹配算法相结合的特征点跟踪方法。通过融合该方法,创新性地设计了一种多人脸跟踪系统框架,在目标出现明显的姿态、尺寸变化,或者遭遇局部遮挡、光照不充分等复杂环境干扰下,能够实现对目标人脸稳定跟踪。通过多组实验数据的对比,证明了该跟踪方法比Mean shift算法、传统KLT算法具有更好的鲁棒性,能获得更精确的运动信息;验证了多人脸跟踪系统能够在复杂环境下实现对多人脸的有效跟踪。 Aiming at the problem of multi-object face tracking in the video sequence, we propose a feature point tracking method which combines the SURF feature with KLT matching algorithm. By fusing the proposed method, we design a frame of multi-face tracking system innovatively, it is able to achieve stable tracking on the object face when the object appears obvious changes in gesture and size, or encounters the interferences from complex environments of local shelter and inadequate lighting, etc. By the comparisons of multiple sets of experimental data, it is proved that the proposed algorithm, compared with mean shift algorithm and traditional KLT algorithm, has a superior robustness and obtains more accurate motion information. In addition, it also demonstrates that the multiple faces tracking system can achieve effective tracking for multiple faces in a complex environment.
出处 《计算机应用与软件》 CSCD 2015年第2期178-181,共4页 Computer Applications and Software
基金 国家自然科学基金项目(61103129) 江苏省科技支撑计划项目(BE2009009)
关键词 SURF算法 KLT算法 特征点匹配 特征点提取 多人脸跟踪 Speed-up robust feature(SURF) Kanade-Lucas-Tomasi(KLT) feature tracker Feature points matching Feature point ex-traction Multi-face tracking
  • 相关文献

参考文献16

  • 1Fukunaga,Keinosuke. The estimation of the gradient of a density func- tion [ J ]. IEEE Transactions on Information Theory, 1975,21 ( I ) : 32 -4.0.
  • 2张涛,蔡灿辉.一种改进的Mean Shift实时多人脸跟踪算法[J].计算机应用,2009,29(3):781-784. 被引量:6
  • 3徐建军,张蓉,毕笃彦,孙路.一种新的AdaBoost视频跟踪算法[J].控制与决策,2012,27(5):681-685. 被引量:6
  • 4Wang J, Achanta R,Kankanhalli M ,et al. A hierarchical framework for face tracking using state vector fusion for cnnlpressed videu [ C ]//Acoustics, Speech ,mid Siglal Proeessing,2003. Proceedings. (ICASSP03). 2003 1EEE International Conference on. IEEE ,2003,3 :II1-209-12 vol. 3.
  • 5Birchfield S. Kit : animplementation of the kanade-lucas-tomasi feature tracker[ EB/OL]. [2011 - 10 - 17 ]. http://www, ces. clemson, edu/ - stb/klt/.
  • 6Jianbo Shi ,Carlo Tomasi. Good features to track [ C ]. IEEE Conference on Computer Vision and Pattern Recognition, 1994,1 ( 21 - 23 ) :593 - 600.
  • 7Sethi N,Aggarwal A. Robust Face Detection and Tracking Usiug Py- ramidal Lucas Kanade Tracker Algorithm [ J ]. International Journal of Computer Technology and Applications,2002,2 ( .5 ) : 1432 - 1438.
  • 8Abdat F,Maaoui C, Pruski A. Real time facial feature poims tracking with Pyramidal Lucas-Kanade algorithm[ C ]//Robot amt ttuman Intetr- active Communication,2008. RO-MAN 2008. The 17th IEEE Interna- tional Symposium on. IEEE,2008:71 - 76.
  • 9刘玉,王敬东,李鹏.一种基于SIFT和KLT相结合的特征点跟踪方法研究[J].宇航学报,2011,32(7):1618-1625. 被引量:20
  • 10Bay H,Tuytelaars T,Vml Gool L. Surf:Speeded up robust features [ M ]. Computer Vision-ECCV 2006. Springer Berlin Heidelberg,2006:404 - 417.

二级参考文献16

  • 1Jepson A D, Fleet D J, EI-Maraghi T E Robust online appearance models for visual tracking[J]. IEEE Trans onPattern Analysis and Machine Intelligence, 2003, 25(10): 1296-1311.
  • 2Comaniciu D, Ramesh V, Meer E Kernel-Based object tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575.
  • 3Wang H, Suter D, Schindler K, et al. Adaptive object tracking based on an effective appearance filter[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(9): 1661-1667.
  • 4Cornaniciu D, Meer P. A robust approach toward feature space analysis[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
  • 5Tao H, Sawhney H S, Kumar R. Object tracking with Bayesian estimation of dynamic layer representations[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(1): 75-89.
  • 6Williams O, Blake A, Cipolla R. Sparse Bayesian Learning for efficient visual tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1292- 1304.
  • 7Grabner H, Bischof H. On-line boosting and vision [C]. Proc of IEEE Conf on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2006: 260-267.
  • 86Grabner M, Grabner H, Bischof H. Learning features for tracking[C]. Proc of IEEE Conf on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2007: 1-8.
  • 9Lin R S, Ross D, Lim J, et al. Adaptive discriminative generative model and its applications[M]. Boston: MIT Press, 2005: 801-808.
  • 10Avidan S. Support vector tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1064-1072.

共引文献29

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部