期刊文献+

复杂机械系统时变不确定性设计方法 被引量:4

Evolution-Based Uncertainty Design for Complex Mechanical Systems
下载PDF
导出
摘要 考虑机械系统参数随时间的演化,基于连续时间模型和伊藤引理,推导建立了多参数复杂机械系统时变不确定性计算模型,将系统整体时变不确定性由其漂移函数和波动函数表达,系统漂移函数和波动函数则由底层时变参数的漂移率和波动率决定,从而解析了机械系统时变不确定性设计的原理。与传统方法相比,该多参数复杂机械系统时变不确定性设计方法既可以针对各零件(或子系统)进行时变不确定性设计,也可以建立统一的系统状态方程,针对复杂机械系统进行不确定性设计,并且算得的系统可靠度是动态的,可以预测未来任意时刻的可靠度,从而为系统的未来发展趋势提供先期预警,为设备维护提供指导。通过具体算例,说明了该设计方法的应用。该设计方法具有普适性,可以推广应用于城市公交系统、城市给排水系统、燃气系统、核电系统等的时变不确定性设计和可靠性分析。 Considering the evolution of mechanical system parameters, and based on the continuous-time model and Ito Lemma, a time-varying reliability calculation model of multi-parameter complex mechanical system is established. In this model the systems' time-varying uncertainty can be expressed by drift functions and volatility functions, which are dependent on the drift rate and volatility rate known from basic design parameters. Thus the principle of evolution-based uncertainty design (EBUD) for complex mechanical systems is expounded. Compared with the traditional methods, this method can be applied to either the evolution-based uncertainty design of the elements (or subsystems), or the uncertainty design for complex mechanical systems by establishing uniform system state equations. By this means, the dynamic system reliability can be obtained, and the reliability at any time in the future can be calculated. Thereby the time- varying reliability calculation model can forecast the system' s future development trend and offer early warnings, giving proper advice for the equipment maintenance. Taking the design of bolt group as an example and with the model applied, the time-varying reliabilities of screws in different positions are calculated and compared. In this example, the basic time-varying parameters include the turning torque M, the pre-load Fp, the minor diameter dl and the yield strength [S] of the screws. This method can also be used in other fields, such as evolution-based uncertainty design and reliability analysis of urban traffic control system, urban water-supply and drainage system, urban gas supply system, and so on.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2015年第3期80-84,135,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(51075029)
关键词 时变不确定性设计 机械系统 可靠度 evolution-based uncertainty design (EBUD) mechanical system reliability
  • 相关文献

参考文献10

  • 1TONON F, BERNARDINI A, MAMMINO A. Deter- mination of parameters range in rock engineering by means of Random Set Theory [J]. Reliability Engi- neering and System Safety, 2000, 70(3): 241-261.
  • 2JENSEN H A, KUSANOVIC D S. Reliability-based optimization of stochastic systems using line search [J]. Computer Methods in Applied Mechanics and En- gineering, 2009, 198: 3915-3924.
  • 3ADDURI P R, PENMETSA R C. Confidence bounds on component reliability in the presence of mixed un- certain variables [J]. International Journal of Mechan- ical Sciences, 2008, 50(3): 481-489.
  • 4WANG Zequn, WANG Pingfeng. A new approach for reliability analysis with time-variant performance char- acteristics [J]. Reliability Engineering and System Safety, 2013, 115.. 70-81.
  • 5ANDRIEN-RENAUD C, SUDRET B, LEMAIRE M. The PHI2 method: a way to compute time-variant reli- ability [J]. Reliability Engineering and System Safety,2004, 84(1) .. 75-86.
  • 6GRIGORIN M, SAMORODNITSKY G. Reliability of dynamic systems inrandom environment by extreme value theory [J]. Probabilistic Engineering Mechan- ics, 2014, 38.. 54-59.
  • 7JIANG C, NI B Y, HAN X, et al. Non-probabilistic convex model process., a new method of time-variant uncertainty analysis and its application to structural dynamic reliability problems [J]. Computer Method in Applied Mechanics and Engineering, 2014, 268.. 656- 676.
  • 8石博强,闫永业,范慧芳,赵德祥.时变不确定性机械设计方法[J].北京科技大学学报,2008,30(9):1050-1054. 被引量:7
  • 9闫永业,石博强.考虑不确定性因素的时变可靠度计算方法[J].西安交通大学学报,2007,41(11):1303-1306. 被引量:7
  • 10LO A W. Maximum likelihood estimation of general- ized Irons proeesses with diseretely sampled data [J]. Eeonometric Theory, 1988, 4(2) .. 231-247.

二级参考文献20

  • 1刘德顺,岳文辉,杜小平.不确定性分析与稳健设计的研究进展[J].中国机械工程,2006,17(17):1834-1841. 被引量:36
  • 2Mocko G M, Paasch R. Incorporating uncertainty in diagnostic analysis of mechanical systems [J]. ASME Journal of Mechanical Design, 2005, 127 (2): 315- 325.
  • 3Marti K, Kaymaz L Reliability analysis for elastoplastic mechanical structures under stochastic uncertainty [J]. Zeitschrift fur Angewandte Mathematik und Mechanik, 2006, 86(5): 358-384.
  • 4Tonon F. Using random set theory to propagate epistemic uncertainty through a mechanical system [J]. Reliability Engineering and System Safety, 2004, 85 (1/3): 169-181.
  • 5Wehenkel L, Lebrevelec C, Trotignon M, et al. Probabilistic design of power-system special stability controls [J]. Control Engineering Practice, 1999, 7(2):183-194.
  • 6Yasumasa F, Fabrizio D, Roberto T. Probabilistic design of LPV control systems [J]. Automatica, 2003, 39(8) : 1323-1337.
  • 7Wen Y K. Reliability-based design under multiple loads [J]. Structural Safety, 1993, 13(1/2): 3-19.
  • 8Ravindra M K, Walser A. Probabilistic design of nuclear structures: a summary of state of the art and research needs [J]. Nuclear Engineering and Design, 1978, 50(1): 115-122.
  • 9Mocko G M, Paasch R. Incorporating uncertainty in diagnostic analysis of mechanical systems. ASME J Mech Des, 2005, 127 (2): 315
  • 10Marti K, Kayrnaz I. Reliability analysis for elastoplastic mechanical structures under stochastic uncertainty. Z Angew Math Mech, 2006, 86(5): 358

共引文献10

同被引文献26

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部