期刊文献+

时变混合共轭梯度盲提取算法 被引量:10

A Conjugate Gradient Algorithm of Time-varying Mixtures for Blind Source Extraction
下载PDF
导出
摘要 针对传统独立分量分析(ICA)方法对时变信道跟踪能力较差的问题,提出了一种时变混合共轭梯度盲提取算法。该算法有效利用了各源信号的时序结构差异,仅利用其二阶统计量解决了具有不同功率谱密度的信号的分离,而无须估计信号的概率密度和计算高阶累积量,减少了运算的复杂度并可用于杂系信号混合的盲分离问题;同时,算法利用仅具有一个全局最优解的凸代价函数,采用计算简单并具有较好数值表现的自适应共轭梯度算法进行迭代,获得了更快的收敛速度和更好的稳定性能。仿真结果表明,该算法与传统ICA算法相比,具有对时变系统更好的跟踪能力。 Aiming at the problem of poor tracking abilities of traditional independent component analysis (ICA)methods for time-varying channels,a conjugate gradient algorithm was proposed for blind source extraction of time-varying mixtures. The algorithm made effective use of the temporal structure difference among the source signals,and the sources with differ-ent power spectral density could be separated by the use of second-order statistics.Thus,there was no necessity to estimate the probability density of source signals or calculate their high-order statistics,in which way,the calculation complexity was decreased and the hybrid signals might also be separated.Meanwhile,the algorithm took advantage of the convex cost func-tion with only one global extreme point,and an adaptive conjugate gradient algorithm which was both easy and effective was used as the iteration algorithm.As a result,a faster convergence speed and a better stable ability were achieved.The simu-lation results indicate that,the proposed algorithm has better tracking ability for time-varying system than the traditional ICA ones.
作者 杨柳 张杭
出处 《信号处理》 CSCD 北大核心 2015年第1期51-58,共8页 Journal of Signal Processing
关键词 时变 二阶统计量 共轭梯度 杂系混合 跟踪能力 time-varying second-order statistics conjugate gradient hybrid mixtures tracking ability
  • 相关文献

参考文献14

  • 1Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis [ J]. IEEE Trans. On Neural Networks, 1999, 10(3):626-634.
  • 2陈海平,张杭,路威,张江.时变混合系统的在线FastICA算法[J].通信技术,2014,47(2):136-140. 被引量:2
  • 3蒋照菁,辜方林,张杭.一种基于NPCA的自适应变步长盲源分离算法[J].计算机工程与应用,2013,49(8):206-208. 被引量:8
  • 4李广彪,张剑云.基于分离度的步长自适应自然梯度算法[J].信号处理,2007,23(3):429-432. 被引量:9
  • 5Jafari M G, Seah H W, Chambers J A. A combined kal- man filter and natural gradient algorithm for blind separa- tion of binary distributed sources in time-varying channels [ C ] //Proc. ICASSP, Salt Lake City, USA. 2001 : 2769-2772.
  • 6Zhang X D. Kalman filtering algorithm for blind source separation [ C ] //Proc. ICASSP, Philadelphia, USA. 2005 : 257-260.
  • 7Gu F L, Zhang H, Tan X B. RLS algorithm for blindsource separation in non-stationnary environments [ C ]// IEEE Intel. Conf. on CIICT, Dublin, Ireland, 2012.
  • 8Borga M, Knutsson H. A canonical correlation approach to blind source separation[ R]. Dept. Biomed. Eng., Linkoping Univ. , Linkoping, Sweden, Tech. Rep. I,iU- IMT-EX-0062, June 5, 2001.
  • 9Liu W, Mandic D P, Cichocki A. Analysis and online realization of the CCA approach for blind source separa- tion[ J]. IEEE Trans. On Nem'al Net. And Learning Systems, 2007, 18(5) : 1505-1510.
  • 10Zhang W, Tian S, Feng D Z. Adaptive Quasi-Newton Al- gorithm for Source Extraction via CCA Approach [ J ]. IEEE Trans. On Neural Net. And Learning Systems, 2014, 25(4): 677-689.

二级参考文献29

  • 1Thomas P. von Hoff, Allen G. Lindgren and August N. Kaelin. Step-size control in blind source separation [ C ]. Independent Component Analysis and Blind Signal Separation ICA 2000,2000:509-514.
  • 2Cardoso J F. Blind beamforming for non-Gaussian signals [ J ]. IEE Proceedigns-F, 1993. 140(6) :362-370.
  • 3Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis [ J ]. IEEE Transaction on Neural Networks, 1999.10( 3 ) :626-634.
  • 4Amari S, Cichocki A, Yang H H. A new learning algorithms for blind signal separateion [ J ]. Neural Information Processing Systems, 1996,8:757-763.
  • 5Yang H H, Amari S I and Cichocki A. Adaptive on-line learning algorithms for blind separation-maximum entropy and minimum mural information [ J ]. Neural Computation, 1997,7 ( 9 ) : 1457-1482.
  • 6Cardoso J F and Laheld B. Equivariant adaptive source separation [ J ]. IEEE Transactions on Signal Processing, 1996, 44(12) :3017-3030.
  • 7Barak Pearlmutter and Lukas Parr. Maximum likelihood blind source separation: Acontext-sensitive generalication of ICA. Neural Information Processing Systems, 1997,9: 613-619.
  • 8Common P. Independent component analysis, a new concept? [ J] Signal Processing, 1994,36(3) :287-314.
  • 9Yang H H. Serial updating rule for blind separation derived from the method of scoring[ J]. IEEE Trans Signal Processing, 1999,47 ( 8 ) : 2279-2285.
  • 10Bell A J, Sejnowski T J. An information - maximization approach to blind separation and blind deconvolution [ J ]. Neural Computation, 1995,7 (6) : 1129-1159.

共引文献14

同被引文献57

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部