期刊文献+

融合运动和颜色特征的视频目标粒子滤波跟踪 被引量:3

Particle Filter for Video Targets Tracking by Fusing Color and Motion Features
下载PDF
导出
摘要 研究可见光的视频运动目标跟踪问题。运用粒子滤波进行视频图像的目标跟踪时,目标特征的选择较为重要。传统的基于颜色特征的粒子滤波跟踪,在背景与目标的颜色分布相同时容易出现目标丢失现象。运动和颜色的融合信息为特征,在包含目标的局部区域内进行光流计算,并定义运动观测为粒子的运动像素数量。在粒子滤波框架下将运动观测融入到重要性抽样函数中,扩大预测样本与观测似然峰值的重叠区域;以运动和颜色的融合信息形成联合观测似然函数,并根据它们单独观测的质量自适应地确定各自权重。实验结果表明,改进的跟踪算法在背景存在颜色干扰时的鲁棒性和目标发生机动时的准确性均有提高。 The tracking of moving video target is studied. Choosing the suitably features is important to target tracking by particle filter, the traditional feature is colored, which is poor in the background with similar color. The feature fusing the color and motion is chosen. First, the optical flow of the area contained the object is computed, and the particle's motion observation is defined in term of the sum of the moving pixels. Under PF framework, the lat- est motion observation is integrated into the importance density function so as to extend the overlapped regions of pre- diction samples and peak zones of observation likelihood. The color and motion features are fused in the observation likelihood function and their weights are adjusted adaptively according to the quality of individual observation. Two experiments show that the proposed method is accurate and robustly in the moving object tracking.
出处 《计算机仿真》 CSCD 北大核心 2015年第2期347-352,共6页 Computer Simulation
基金 湖北省自然科学基金(2010CDB01503)
关键词 目标跟踪 粒子滤波 特征融合 光流量 颜色直方图 Object tracking Particle filter Multiple features fusion Optical flow Color histogram
  • 相关文献

参考文献15

  • 1张晗,韩颖.特征不连续下的目标跟踪问题优化仿真[J].计算机仿真,2013,30(12):347-350. 被引量:1
  • 2D Amaud, G Simon, A Christophe. On sequential Monte Carlo sampling metht>ds for Bayesian filtering[ J ]. Statistics and Compu- ting, 2000,10( 3 ) : 197 - 208.
  • 3龚俊亮,何昕,魏仲慧,郭敬明.采用改进辅助粒子滤波的红外多目标跟踪[J].光学精密工程,2012,20(2):413-421. 被引量:26
  • 4M S At'ulampalam. A lulorial on particle fillers for online nonlinear non- Gaussian Bayesian tracking[ J]. Sigual Processing, 2002,50 (2) :174 - 188.
  • 5J Q Wang, Y Yagi. Integrating color and shape - texture features lot adaptive real- time object traeking[ J ]. IEEE Transactions on Image Proeessing, 2008,17 ( 2 ) : 235 - 240.
  • 6J F Ning, et al. Robust object tracking using joint color - texture histogram[ J ]. International Journal of Pattern Recognition and Ar- tificial Intelligence, 2009,23 ( 7 ) : 1245 - 1263.
  • 7P Brasnett, et al. Sequential Monte Carlo tracking by fusing multi- ple cues in video sequences [ J ]. Image and Vision Computing, 2007,25:1217 - 1227.
  • 8ADore, M Asadi, C S Regazzoni. Online discriminative feature selection in a Bayesian frame work using shape and appearance [ C ]- The English International Workshop on Visual Surveillance VS2008. Marseille : IEEE, 2008 : 1 - 29.
  • 9李春鑫,王孝通.基于Rao-Blackwellized粒子滤波的多特征融合多光谱目标自适应跟踪[J].光学精密工程,2009,17(9):2321-2327. 被引量:4
  • 10相入喜,李见为.多特征自适应融合的粒子滤波跟踪算法[J].计算机辅助设计与图形学学报,2012,24(1):97-103. 被引量:22

二级参考文献89

共引文献70

同被引文献26

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部