期刊文献+

适用于非晶氧化锌薄膜晶体管的表面势紧凑模型

A Compact Model Available for the Surface Potential of Amorphous Zinc Oxide Thin-film Transistors
下载PDF
导出
摘要 基于泊松方程和高斯定理,采用非迭代算法,在考虑非晶氧化锌薄膜晶体管(Amorphous zinc oxide thin film transistors,a-ZnO TFTs)带隙能态的指数带尾态和深能态的完整分布条件下,解析地建立了a-ZnO TFTs的表面势紧凑模型。与数值迭代算法的计算结果进行比较,该紧凑模型的绝对误差低至10-5 V数量级,且提高了计算效率;与其它实验拟合的陷阱态密度结果对比,进一步验证了模型的正确性。最后,提出的表面势紧凑模型可适用于a-ZnO TFTs器件漏电流模型的建构及其电路的仿真应用。 Based on Poisson′s equation and Gauss′s law,a compact model for the surface potential of amorphous zinc oxide(a-ZnO)thin-film transistors(TFTs)has been derived in this paper,which adopts the non-iterative computations and considers both the exponential band-tail and deep states distributions of a-ZnO TFTs.Compared with the calculated results of numerical iterative,the absolute errors of proposed model can attain 10^-5 V range,and the computational efficiency can also be improved.Compared with the other fitting experimental results of trap density of states(DOS),the accuracy of the proposed model has been further verified.At last,the compact model based on surface potential is available for the model establishment of a-ZnO TFTs and the application of circuit simulation.
出处 《固体电子学研究与进展》 CAS CSCD 北大核心 2015年第1期16-20,共5页 Research & Progress of SSE
基金 国家自然科学基金项目(61204100) 广东自然科学基金项目(S2013010013088) 广州科学技术计划项目(2014Y2-00035) 广东创新研究团队项目(NO.201001D0104648280)
关键词 紧凑模型 表面势 非晶氧化锌 薄膜晶体管 compact model surface potential amorphous zinc oxide thin-film transistors
  • 相关文献

参考文献11

  • 1Ozgur u, Alivov Y I, Li C, et al. A comprehensive review of ZnO materials and devices [J]. J Appl Phys, 2005, 4(98): 101-103.
  • 2Hilo T, Ferrara M, Tiramisu T, et al. Bottom gate zinc oxide thin-film transistors (ZnO TFTs) for AM- LCDs [J]. IEEE Trans Electron Devices, 2008, 55 (11): 3136-3142.
  • 3Hossain F M, Nishii J, Takagi S, et al. Modeling and simulation of polycrystalline ZnO thin film transistors [J]. J ApplPhys, 2003, 94(11): 7768-7777.
  • 4Garcia-Sanchez F J,Ortiz-Conde A. An explicit analyt- ic compact model for nanocrystalline zinc oxide thin- film transistors [J]. IEEE Trans Electron Devices, 2012, 59(1) : 46-50.
  • 5Bubel S, Chablis M L. Model for determination of mid- gap states in amorphous metal oxides from thin film transistors [J]. JApplPhys, 2013, 113(23): 234507- 234516.
  • 6Torricelli F, Muslim J R, Smith E C P, et al. Trans port physics and device modeling of zinc oxide thin film transistors Part I: Long channel devices [J]. IEEE Trans Electron Devices, 2011, 58(8): 2610-2619.
  • 7Lu Aixia, Sun Jia, Jiang Jie, et al. Low-voltage trans- parent electric-double-layer ZnO-based thin-film-tran sistor for portable transparent electronics [J]. Appl Phys Lett, 2010, 96(4): 043114-3.
  • 8Buber S, Meyer S, Chablis M L. Stability of ionic liq uid-gated metal oxides and transistors [ J]. IEEE Trans. Electron Devices, 2014, 61(5): 1561-1566.
  • 9Bae M, Kim Y, Kong D, et al. Analytical models for drain current and gate capacitances in GaZnO thin film sity [J]. IEEE 1546-1548 transistors with effective In den Electron Device Lett, 2011, 32(11).
  • 10Deng W, Huang J, Ma X, et al. An explicit surface- potential based model for amorphous IGZO thin-film transistors including both tail and deep states [J].IEEE Electron Device Lett, 2014, 35(1) .- 78 80.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部