期刊文献+

基于Kademlia的负载平衡云存储算法 被引量:1

Load balancing cloud storage algorithm based on Kademlia
下载PDF
导出
摘要 针对采用主从式结构的主流云存储系统可能出现的性能瓶颈和可扩展问题,基于分布式哈希表(DHT)技术的完全分布式云存储系统成为一种新的选择。解决好节点的负载平衡问题,是此类技术获得推广的关键。研究了Kademlia算法应用于云存储系统的负载平衡性能。考虑到算法在异构环境下负载平衡性能有明显下降,改进算法在Kademlia找出的候选存储节点中根据节点的存储能力来分配负载。仿真结果表明,改进后算法的负载平衡性能有非常明显的提高,在系统模拟运行时间足够长(如1500 h以上)时,过载节点平均下降7.0%(轻载)和33.7%(重载);文件保存成功率平均提高27.2%(轻载)和35.1%(重载),而增加的通信开销可接受。 Prevailing cloud storage systems normally use master/slave structure, which may cause performance bottlenecks and scalability problems in some extreme cases. So, fully distributed cloud storage system based on Distributed Hash Table (DHT) technology is becoming a new choice. How to solve load balancing problem for nodes, is the key for this technology to be applicable. The Kademlia algorithm was used to locate storage target in cloud storage system and its load balancing performance was investigated. Considering the load balancing performance of the algorithm significantly decreased in heterogeneous environment, an improved algorithm was proposed, which considered heterogeneous nodes and their storage capacities and distributed loads according to the storage capacity of each node. The simulation results show that the proposed algorithm can effectively improve load balance performance of the system. Compared with the original algorithm, after running a long period ( more than 1 500 hours in simulation), the number of overloaded nodes in system dropped at an average percentage 7.0% ( light load) to 33.7% ( heavy load), file saving success rate increased at an average percentage 27.2% ( light load) to 35.1% (heavy load), and also its communication overhead is acceptable.
出处 《计算机应用》 CSCD 北大核心 2015年第3期643-647,658,共6页 journal of Computer Applications
基金 国家863计划项目(2013AA01A211)
关键词 云存储 负载平衡 分布式文件系统 KADEMLIA peersim cloud storage load balancing , distributed file system Kademlia peersim
  • 相关文献

参考文献13

  • 1GHEMAWAT S, GOBIOFF H, LEUNG S-T. The Google file system[C]//Proceedings of the 19th ACM Symposium on Operating Systems Principles. New York: ACM, 2003:29-43.
  • 2Hadoop community. Hadoop disributed file system[EB/OL].[2014-07-11]. http://hadoop.apache.org/.
  • 3张聪萍,尹建伟.分布式文件系统的动态负载均衡算法[J].小型微型计算机系统,2011,32(7):1424-1426. 被引量:21
  • 4刘琨,钮文良.一种改进的Hadoop数据负载均衡算法[J].河南理工大学学报(自然科学版),2013,32(3):332-336. 被引量:10
  • 5STOICA I, MORRIS R, KARGER D, et al. Chord: a scalable peer-to-peer lookup service for Internet applications[C]//Proceedings of the International Conference of the Special Interest Group on Data Communication. New York: ACM, 2001:149-160.
  • 6ROWSTRON A, DRUSCHEL P. Pastry: scalable, decentralized object location and routing for large-scale peer-to-peer systems[C]//Proceedings of IFIP/ACM International Conference on Distributed Systems Platforms. New York: ACM, 2001:329-350.
  • 7HILDRUM K, KUBIATOWICZ J D, RAO S, et al. Distributed object location in a dynamic network[J]. Theory of Computer Systems, 2002,37(3):405-440.
  • 8MAYMOUNKOV P, MAZTERES D. Kademlia: a peer-to-peer information system based on the XOR metric[C]//Proceedings of the 1st International Workshop on Peer-to-Peer Systems. Berlin: Springer, 2002:153-161.
  • 9黄秋兰,程耀东,陈刚.分布式存储系统的哈希算法研究[J].计算机工程与应用,2014,50(1):1-4. 被引量:17
  • 10吴吉义,傅建庆,平玲娣,谢琪.一种对等结构的云存储系统研究[J].电子学报,2011,39(5):1100-1107. 被引量:49

二级参考文献57

  • 1王小云,张全清.MD_5报文摘要算法的各圈函数碰撞分析[J].计算机工程与科学,1996,18(2):15-22. 被引量:14
  • 2黎琳.MD4算法分析[J].山东大学学报(理学版),2007,42(4):1-5. 被引量:7
  • 3Sanjay Ghernawat, Howard Gobioff, Shun-Tak Leung. The Google file system E A] .Proc of the 19th ACM Symposium on Operating Systems Principles [C]. New York: ACM Press, 2003.29 - 43.
  • 4Dhruba Borthaku. The Hadoop Distributed File System: Architecture and Design E EB/OL 1. http://hadoop, apache, org/ common/docs/r0.16.0/hdfs_ design, pdf, 2011.
  • 5Hbase Development Team. Hbase: Bigtable-Like Slructured Storage for Hadoop Hdfs [ EB/OL ]. http://wiki, apache. org/hadoop/Hbase, 2011.
  • 6Amazon. Amazon Simple Storage Service[EB/OL]. http:// www. amazon, com/s3,2011.
  • 7Yunhong Gu, Robert L Grossman. Sector and sphere: The design and implementation of a high-performance data cloud ~ J]. Philosophical Transactions of the Royal Society, 2009, 367A: 2429 - 2445.
  • 8Robert L Grossman, Yunhong Gu.Data mining using high per- formance data clouds: Experimental studies using sector and sphere [ A ]. Proc of the 14th ACM SIGKDD [ C ]. Las Vegas: ACM Press, 2008.920 - 927.
  • 9James Bmberg,Rajkumar Buyya,Zahir Taft. Creating a 'cloud storage' mashup for high performance, low cost content delivery [A]. Proc of the 6th International Conference on Service- Oriented Computing [ C ]. ICSOC 2008, Australia, Springer, LNCS 5472,2009. 178- 183.
  • 10James Broberg, Zahir Taft. MetaCDN: Harnessing storage clouds for high performance content delivery [A]. Proc of the 6th International Conference on Service-Oriented Computing [C], ICSOC 2008, Australia, Springer, LNCS 5364,2008.730 - 731.

共引文献96

同被引文献12

  • 1LIU S, JIANG Y, STRIEGEL A. Face-to-face proximity estimationusing bluetooth on smartphones[J]. IEEE Transactions on Mobile Computing, 2014, 13(4):811-823.
  • 2CHU C K, CHOW S S M, TZENG W G, et al. Key-aggregate cryptosystem for scalable data sharing in cloud storage[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(2):468-477.
  • 3FU Y, JIANG H, XIAO N, et al. Application-aware local-global source deduplication for cloud backup services of personal storage[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(5):1155-1165.
  • 4YANG K, JIA X. Expressive, efficient, and revocable data access control for multi-authority cloud storage[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(7):1735-1744.
  • 5NARULA S, JAIN A. Cloud computing security:Amazon Web service[C]//Proceedings of the 20155th International Conference on Advanced Computing & Communication Technologies. Piscataway, NJ:IEEE, 2015:501-505.
  • 6LIN W W, HE P J, LIU B. Management method of energy consumption optimization nodes in cloud storage system[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(1):104-110.
  • 7KOSTA S, AUCINAS A, HUI P, et al. ThinkAir:dynamic resource allocation and parallel execution in the cloud for mobile code offloading[C]//Proceedings of the 31st Annual IEEE International Conference on Computer Communications. Piscataway, NJ:IEEE, 2012:945-953.
  • 8SAARINEN A, SIEKKINEN M, XIAO Y, et al. SmartDiet:offloading popular apps to save energy[J]. ACM SIGCOMM Computer Communication Review, 2012, 42(4):297-298.
  • 9BARBERA M V, KOSTA S, STEFA J, et al. CloudShield:efficient anti-malware smartphone patching with a P2P network on the cloud[C]//Proceedings of the 2012 IEEE 12th International Conference on Peer-to-Peer Computing. Piscataway, NJ:IEEE, 2012:50-56.
  • 10DRAGO I, MELLIA M, MUNAFO M M, et al. Inside dropbox:understanding personal cloud storage services[C]//Proceedings of the 2012 ACM Conference on Internet Measurement Conference. New York:ACM, 2012:481-494.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部