期刊文献+

低调整率的广义AVL树及其统一重平衡方法 被引量:2

Generalized AVL tree with low adjusting ratio and its unified rebalancing method
下载PDF
导出
摘要 针对传统AVL(Adelson-Velskii and Landis)树重平衡算法代码量大、流程复杂、调整率过高的问题,提出一种统一重平衡算法,并提出广义AVL树的概念。统一重平衡算法能对AVL树的失衡节点进行自动分类、调整,取消了传统重平衡方法中的四种旋转操作。广义AVL树放松了AVL树的平衡约束,允许左右子树树高相差不超过N(N≥1),当更新操作(插入/删除)执行后,广义AVL树只在平衡约束条件不满足时采用统一重平衡算法进行调整。理论分析与实验结果表明,广义AVL树的调整率随着N的增大而显著降低:N为5时,调整率低于4%;N为13时调整率低于千分之一。广义AVL树的调整率远低于红黑树等经典数据结构,适合并发应用。 The traditional AVL ( Adelson-Velskii and Landis) tree programming has been faced with the problem of too much code, complex process and high adjusting ratio. To solve these problems, a unified reb'alancing method was developed and a generalized AVL (AVL-N) tree was defined. The unified rebalancing method automatically classifies the type of the unbalanced node in AVL tree and uses a new way to adjust the tree shape without using standard rotations. AVL-N tree with relaxed balance allows the height difference between the right sub-tree and left sub-tree doesn't exceed N( N ≥ 1 ). When insertions and deletions have been performed in AVL-N tree, the height difference between the right sub-tree and left sub-tree of some nodes may be higher than N. At that time the unified rebalancing would be applied to rearrange the unbalanced node's descendants. The simulation results indicate that the adjusting ratio of AVL-N tree reduced significantly with N increasing, it is less than 4% for N =5 and less than 0.1% for N = 13. The adjusting ratio of AVL-N tree is far below other classic data structures, such as red-black tree, and allows for a greater degree of concurrency than the original proposal.
出处 《计算机应用》 CSCD 北大核心 2015年第3期654-658,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(2012D41261091 2011F61163023)
关键词 广义AVL树 放松平衡约束 重平衡 调整率 generalized Adelson-Velskii and Landis (AVL) tree relaxed balance constraint rebalancing adjusting ratio
  • 相关文献

参考文献13

  • 1SHAVIT N. Data structures in the multicore age[J]. Communications of the ACM, 2011,54(3):76-84.
  • 2JUAN B, YADRAN E. A concurrent red black tree[J]. Journal of Parallel and Distributed Computing, 2013,73(4):434-449.
  • 3BRONSON N G, CASPER J, CHAFI H, et al. A practical concurrent binary search tree[C]//Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. New York:ACM, 2010:257-268.
  • 4AFEK Y, KAPLAN H, KORENFELD B, et al. CBTree: a practical concurrent self-adjusting search tree[C]//Proceedings of the 26th International Conference on Distributed Computing. Berlin: Springer, 2012,7611:1-15.
  • 5LARSEN K S. AVL trees with relaxed balance[J]. Journal of Computer and System Sciences, 2000,61(3):508-522.
  • 6陈春光,张坤龙,谭龙飞,韩昭.并发非阻塞自组织链表算法[J].计算机工程,2013,39(8):31-37. 被引量:8
  • 7刘少东,邢永康,刘恒.无锁并发二叉搜索树的实现[J].计算机应用,2012,32(10):2736-2741. 被引量:1
  • 8FAITH E, PANAGIOTA F, ERIC R, et al. Non-blocking binary search trees[C]//Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing. New York: ACM, 2010:131-140.
  • 9HERLIHY M, LEV Y, LUNCHANGCO V, et al. A provably correct scalable concurrent skip list[C]//Proceedings of the 22nd Annual Symposium on Principles of Distributed Computing. New York: ACM, 2003:92-101.
  • 10邓俊辉.数据结构[M].2版.北京:清华大学出版社,2012:211-217.

二级参考文献40

  • 1岑岗,周炳生.严格平衡二叉排序树及其构造[J].计算机工程与应用,2005,41(13):57-60. 被引量:7
  • 2朱宇,张红彬.平衡二叉树的选择调整算法[J].中国科学院研究生院学报,2006,23(4):527-533. 被引量:11
  • 3Herlihy M,Shavit N.多处理器编程的艺术[M].金海,胡侃,译.北京:机械工业出版社,2009:141-145.
  • 4Yan WM,Wu WM.Data Structures (C Language).Beijing:Tsinghua University Press,1997.233 ~ 238(in Chinese)
  • 5Lu KC.Introduction to Computer Algorithm-Design and Analysis.Beijing:Tsinghua University Press,1996.161 ~ 164(in Chinese)
  • 6William Ford,William Topt.Data Structures with C ++.Beijing:Tsinghua University Press,1997.721 ~728
  • 7Clifford A,Shaffer.A Practical Introduction to Data Structures and Algorithm Analysis (C + + Edition) (2nd ed.).Beijing:Publishing House of Electronics Industry,2002.280
  • 8GUIBAS L J, SEDGEWICK R. A dichromatic framework for bal- anced trees[ C]//Proceedings of 19th Annual Symposium on Foun- dations of Computer Science. Piscataway, NJ: IEEE Press, 1978: 8 -21.
  • 9NURMI 0 , SOISALON-SOININEN E. Chromatic binary search trees: A structure for concurrent rebalancing[ J]. Acta Informatica, 1996, 33(6) : 547 -557.
  • 10BOYAR J, FAGERBERG R, LARSEN K S. Amortization results for chromatic search trees, with an application to priority queues[ J] . Journal of Computer and System Sciences, 1997, 55(3) : 504 - 521.

共引文献21

同被引文献6

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部