期刊文献+

基于多维问题的交叉算子量子粒子群优化算法 被引量:7

Quantum-behaved particle swarm optimization algorithm with crossover operator to multi-dimension problems
下载PDF
导出
摘要 针对量子行为粒子群优化(QPSO)算法在求解多维问题时优秀维信息丢失的问题,引入交叉算子的策略,改善解的质量,提升算法性能。首先,分析了量子粒子群算法进化过程中的粒子整体更新评价策略,发现各维信息之间相互干扰,会丢失已经搜索到的优秀维信息;然后,指出如果采用逐维进化方法,会指数级增加算法的复杂度;最后,提出对进化过程中的问题解采用多点交叉的策略增加优秀维信息的保留概率,并将改进后的量子粒子群算法与线性下降参数控制策略、非线性下降参数控制策略方法通过12个CEC2005 benchmark测试函数进行了比较,并对结果进行了分析。仿真结果显示,所提算法比改进前在10个测试函数中取得了明显的改进效果,而比其他2种改进算法也在7个测试函数中取得了优势。因此该算法能够有效提升量子粒子群优化算法的性能。 According to the problem that better dimensions information of particles will loss in Quantum-behaved Particle Swarm Optimization (QPSO) algorithm when solving multi-dimensions problems, a strategy with crossover operator was introduced and the quality of solutions and the performance of algorithm would be improved. Firstly, the whole update and evaluation strategy on solutions in algorithm was analyzed and the better dimensions information of particles would loss because of the mutual interference between dimensions. Secondly, when the evolution was executed dimension by dimension, the algorithm complexity would increase exponentially. Finally, multi-crossover method was employed to increase the retaining probability of excellent dimension information. The comparison and analysis results of the proposed method, with linearly decreased coefficient control method and non-linearly decreased coefficient control method on 12 CEC2005 benchmark functions were given. The simulation results show the modified algorithm can greatly improve the QPSO performance compared with the basic QPSO in 10 functions and also get better performance in 7 functions compared with the other two QPSO variants. Therefore, the proposed method can improve the performance of QPSO effectively.
出处 《计算机应用》 CSCD 北大核心 2015年第3期680-684,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61170119) 江苏省"青蓝工程"资助项目
关键词 粒子群优化算法 交叉算子 维信息 量子行为 交叉率 Particle Swarm Optimization (PSO) algorithm crossover operator dimension information quantum-behaved crossover rate
  • 相关文献

参考文献14

  • 1KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of the 1995 IEEE International Conference on Neural Network. Piscataway: IEEE, 1995:1942-1948.
  • 2van den BERGH F. An analysis of particle swarm optimizers[D]. Pretoria: University of Pretoria, 2001.
  • 3ZHENG Y, MA L, ZHANG L. Empirical study of particle swarm optimizer with an increasing inertia weight[C]//Proceedings of the 2003 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2003:221-226.
  • 4CLERC M. Discrete particle swarm optimization, illustrated by the traveling salesman problem, new optimization techniques in engineering[M]. Berlin: Springer, 2004:219-239.
  • 5SUN J, XU W, FENG B. A global search strategy of quantum-behaved particle swarm optimization[C]//Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems. Piscataway: IEEE, 2004:111-116.
  • 6SUN J, WU X, PLADE V, et al. Convergence analysis and improvements of quantum-behaved particle swarm optimization[J]. Information Sciences, 2012,193:81-103.
  • 7XI M, SUN J, XU W. An improved quantum-behavedparticle swarm optimization algorithm with weighted mean best position[J]. Applied Mathematics and Computation, 2008,205(2):751-759.
  • 8SUN J, FANG W, XU W, et al. Quantum-behaved particle swarm optimization analysis of individual particle behavior and parameter selection[J]. Evolutionary Computation, 2012,20(3):349-39.
  • 9OMRANPOUR H, EBADZADEH M, SHIRY S, et al. Dynamic particle swarm optimization for multimodal function[J]. International Journal of Artificial Intelligence, 2012,1(1):1-10.
  • 10OMKAR S, KHANDELWAL R, ANANTH T, et al. Quantum behaved Particle Swarm Optimization (QPSO) for multi-objective design optimization of composite structures[J]. Expert Systems with Applications, 2009,36(8):11312-11322.

同被引文献75

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部