期刊文献+

基于仿射传播聚类的自适应手写字符识别 被引量:6

Adaptive handwritten character recognition based on affinity propagation clustering
下载PDF
导出
摘要 对于手写字符识别过程中相似字符较多且相同字符存在大量不规则书写变形的问题,提出一种改进的仿射传播聚类算法加入手写字符识别过程中。该算法基于原始仿射传播(AP)聚类算法,将其与聚类评判函数Silhouette结合,通过AP算法迭代过程自适应地改变偏向参数以调整类别数,并且结合每次聚类质量得到最优聚类结果。基于手写汉字识别的实验结果表明,加入了原始AP算法的识别率比传统识别过程得到的识别率总体提高1.52%,而加入改进AP算法的识别率又比加入原始AP算法的识别率总体提高了1.28%。该实验结果验证了加入聚类算法于手写字符识别过程的有效性,而改进AP算法相比原始AP算法在收敛性和聚类质量上都有一定的提高。 For too many similar words and lots of irregular writing ways of the same words in the handwritten character recognition, a modified Affinity Propagation (AP) clustering algorithm was proposed to add to the recognition process. Clustering judging function Silhouette was combined with original AP algorithm in the proposed algorithm. Class number was updated by changing preference parameter adaptively through iterative process of AP algorithm. And then the optimal clustering result was obtained by assessing clustering quality of every iteration. The experiment of handwritten Chinese character recognition indicates that the recognition rate of recognition process added original AP algorithm is 1.52% higher than the rate of traditional recognition process. And the recognition rate of recognition process added modified AP algorithm is 1.28% higher than the rate of recognition process added original AP algorithm. The experimental results verify that it is effective to add clustering algorithm to the handwritten character recognition process. And compared with original AP algorithm, convergence and clustering quality of modified AP algorithm are also improved.
出处 《计算机应用》 CSCD 北大核心 2015年第3期807-810,共4页 journal of Computer Applications
关键词 仿射传播聚类 手写字符 评判函数 偏向参数 聚类质量 Affinity Propagation (AP) clustering handwritten character judging function preference parameter clustering quality
  • 相关文献

参考文献13

  • 1XU X, WU X, WANG J, et al. Recognition research of offline-handwritten Chinese character based on biomimetic pattern[J]. Procedia Engineering, 2011,15:5116-5120.
  • 2贺玲,蔡益朝,杨征.高维数据聚类方法综述[J].计算机应用研究,2010,27(1):23-26. 被引量:42
  • 3FREY B J, DUECK D. Clustering by passing messages between data[J]. Science, 2007,315(5814):972-976.
  • 4JIA Y, WANG J, ZHANG C, et al. Finding image exemplars using fast sparse affinity propagation[C]//Proceedings of the 16th ACM International Conference on Multimedia. New York: ACM, 2008:639-642.
  • 5DUECK D, FREY B J. Non-metric affinity propagation for unsupervised image categorization[C]//Proceedings of the IEEE 11th International Conference on Computer Vision. Piscataway: IEEE, 2007:1-8.
  • 6王开军,李健,张军英,涂重阳.半监督的仿射传播聚类[J].计算机工程,2007,33(23):197-198. 被引量:29
  • 7SHANG F, JIAO L C, SHI J, et al. Fast affinity propagation clustering: a multilevel approach[J]. Pattern Recognition. 2012,45(1):474-486.
  • 8王开军,张军英,李丹,张新娜,郭涛.自适应仿射传播聚类[J].自动化学报,2007,33(12):1242-1246. 被引量:145
  • 9VELAMURU P K, RENAUT R A, GUO H, et al. Robust clustering of positron emission tomography data[EB/OL].[2014-08-21]. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=6DB8EAEA2EEFA30C30C6309AD70C659D?doi=10.1.1.329.7075&rep=rep1&type=pdf.
  • 10LIU C, YIN F, WANG D, et al. Online and offline handwritten Chinese character recognition: benchmarking on new databases[J]. Pattern Recognition, 2013,46(1):155-162.

二级参考文献43

  • 1ERTOZ L, STEINBACH M, KUMAR V. Finding clusters of different sizes, shapes and densities in noisy high-dimensional data[ R]. Minnesota: Department of Computer Science, University of Minnesota, 2002.
  • 2HAM J H, LEE D D, SAUL L K. Learning high-dimensional correspondences from low dimensional manifolds [ C ]//Proc of ICML Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining. Washington: [ s. n. ] , 2003:34-41.
  • 3KOHONEN T. Self-organization and associated memory [ M]. [ S. l. ]: Springer-Verlag, 1988.
  • 4KOHONEN T. Self-organizing maps [ M ]. New York: Spinger-Verlag, 2001.
  • 5MINKA T P. Automatic choice of dimensionality for PCA[ C ]//Proc of International Conference on Advances in Neural Information Processing Systems. Cambridge: [ s. n. ] , 2001:598-604.
  • 6GRIFFITHS T L, KALISH M L. A muhidimensional scaling approach to mental multiplication[ J ]. Memory & Cognition, 2002,30 ( 1 ) : 97-106.
  • 7CAMASTRA F, VINCIARELLI A. Estimating the intrinsic dimension of data with a fractal-based method [J].IEEE Trans on Pattern Anal Mach Intell, 2002,24(10) :1404-1407.
  • 8CAMASTRA F. Data dimension estimation methods: a survey[ J]. Pattern Recognition, 2003, 36:2945-2954.
  • 9SCHOLKOPF B, SMOLA A, MULLER K. Nonlinear component analysis as a kernel eigenvalue problem [ J ]. Neural Computation, 1998,10(5) :1299-1319.
  • 10TENENBAUM J B, De SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction [ J ]. Science, 2000,290(5500) :2319-2323.

共引文献196

同被引文献35

引证文献6

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部