期刊文献+

自适应加权编码L_(1/2)正则化的图像重建算法 被引量:4

Image restoration algorithm of adaptive weighted encoding and L_(1/2) regularization
下载PDF
导出
摘要 针对图像重建过程中噪声去除问题,提出一种自适应加权编码L1/2正则化重建算法。首先,考虑到许多真实图像中不仅含有高斯噪声,而且含有拉普拉斯噪声,设计一种改进的L1-L2混合误差模型(IHEM)算法,该算法兼顾了L1范数与L2范数的各自优点;其次,由于迭代过程中噪声分布会发生改变,设计一种自适应隶属度算法,该算法可以减少迭代次数和运算时间;利用一种自适应加权编码方法,该方法可以有效地去除含有重尾分布特性的拉普拉斯噪声;另外,设计一种L1/2正则化算法,该算法可以得到较稀疏的解。实验结果表明,相比IHEM算法,自适应L1/2正则化图像重建算法的峰值信噪比(PSNR)平均提高了3.46 d B,结构相似度(SSIM)平均提高了0.02,对含有多种噪声的图像处理具有比较理想的效果。 Aiming at the denoising problem in image restoration, an adaptive weighted encoding and L1/2 regularization method was proposed. Firstly, for many real images which have not only Gaussian noise, but have Laplace noise, an Improved L1-L2 Hybrid Error Model (IHEM) method was proposed, which could have the advantages of both Ll norm and L2 norm. Secondly, considering noise distribution change in the iteration process, an adaptive membership degree method was proposed, which could reduce iteration number and computational cost. An adaptive weighted encoding method was applied, which had a perfect effect on solving the noise heavy tail distribution problem. In addition, L1/2 regularization method was proposed, which could get much sparse solution. The experimental results demonstrate that the proposed algorithm can lead to Peak Signal-to- Noise Ratio (PSNR) about 3.5 dB improvement and Structural SIMilarity (SSIM) about 0.02 improvement in average over the IHEM method, and it gets an ideal result to deal with the different noise.
出处 《计算机应用》 CSCD 北大核心 2015年第3期835-839,862,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61462052) 云南省自然科学基金资助项目(KKSY201403049) 中国科学院太阳活动重点实验室项目(KLSA201310) 昆明市科技局项目(08S100310)
关键词 L1/2正则化 自适应隶属度 加权编码 稀疏解 L1-L2混合误差模型 L1-L2 Hybrid Error Model (HEM) adaptive membership degree weighted encoding sparse solution L1/2regularization
  • 相关文献

参考文献26

  • 1YANG J, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010,19(11):2861-2873.
  • 2DONG W, ZHANG D, SHI G, et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization[J]. IEEE Transactions on Image Processing, 2011,20(7):1838-1857.
  • 3ELAD M, FIGUEIREDO M A T, MA Y. On the role of sparse and redundant representations in image processing[J]. Proceedings of the IEEE, 2010,98(6):972-982.
  • 4RUBINSTEIN R, ZIBULEVSKY M, ELAD M. Double sparsity: learning sparse dictionaries for sparse signal approximation[J]. IEEE Transactions on Signal Processing, 2010, 58(3):1553-1564.
  • 5JIANG J, ZHANG L, YANG J. Mixed noise removal by weighted encoding with sparse nonlocal regularization[J]. IEEE Transactions on Image Processing, 2014,23(6):2651-2662.
  • 6LIU J, TAI X, HUANG H, et al. A weighted dictionary learning model for denoising images corrupted by mixed noise[J]. IEEE Transactions on Image Processing, 2013,22(3):1108-1120.
  • 7SONG H, ZHANG D, WANG P, et al. An adaptive L1-L2 hybrid error model to super-resolution[C]//Proceedings of the 2010 17th IEEE International Conference on Image Processing. Piscataway: IEEE, 2010:2821-2824.
  • 8XU Z, ZHANG H, WANG Y, et al. L1/2 regularization[J]. Science China: Information Science, 2010,53(6):1159-1169.
  • 9KRISHNAN D, FERGUS R. Fast image deconvolution using hyper-laplacian priors[EB/OL].[2014-07-01]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.539&rep=rep1&type=pdf.
  • 10ELAD M, HEL-OR Y. A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur[J]. IEEE Transactions on Image Processing, 2001,10(8):1187-1193.

二级参考文献6

共引文献39

同被引文献17

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部