期刊文献+

不可压饱和多孔弹性杆动力响应的多辛方法 被引量:1

A Multi-Symplectic Method for Dynamic Responses of Incompressible Saturated Poroelastic Rods
下载PDF
导出
摘要 研究了不可压饱和多孔弹性杆的一维动力响应问题.基于多孔介质理论,在流相和固相微观不可压、固相骨架小变形的假定下,建立了不可压流体饱和多孔弹性杆一维轴向动力响应的数学模型.利用Hamilton空间体系的多辛理论,构造了不可压饱和多孔弹性杆轴向振动方程的多辛形式及其多种局部守恒律.采用中点Box离散方法得到轴向振动方程的多辛离散格式和局部能量守恒律以及局部动量守恒律的离散格式;数值模拟了不可压饱和多孔弹性杆的轴向振动过程,记录了每一时间步的局部能量数值误差和局部动量数值误差.结果表明,已构造的多辛离散格式具有很高的精确性和较长时间的数值稳定性,这为解决饱和多孔介质的动力响应问题提供了新的途径. Dynamic responses of incompressible saturated poroelastic rods were investigated. Based on the theory of porous media,the 1Daxial vibration equation for a fluid saturated elastic porous rod was established,in which the saturated porous material was modeled as a 2-phase system composed of an incompressible solid phase and an incompressible fluid phase. Then a 1st-order multi-symplectic form for the axial vibration equation and several local conservation laws for the saturated poroelastic rod were derived with the multi-symplectic method. M oreover,the midpoint Box multi-symplectic scheme for the axial vibration equation,and the discrete schemes for the local energy conservation lawand local momentum conservation lawwere constructed with the midpoint method. Finally,the axial vibration process of the incompressible saturated poroelastic rod was simulated numerically and numerical errors of the local energy conservation lawand local momentum conservation lawwere also discussed by means of the numerical results of each time step and each time-space step,respectively. The results showthat the proposed multi-symplectic scheme has advantages of high accuracy,long-time numerical stability and good conservation properties,and this method provides a newway to solve the dynamic responses of saturated porous media.
出处 《应用数学和力学》 CSCD 北大核心 2015年第3期242-251,共10页 Applied Mathematics and Mechanics
基金 国家自然科学基金(11372252 11172239 11372253) 中央高校基金(2014G1121096)~~
关键词 饱和多孔弹性杆 多辛方法 动力响应 离散 saturated poroelastic rod multi-symplectic method dynamic response discrete
  • 相关文献

参考文献15

  • 1Theodorakopoulos D D,Niskos D E.Flexural vibrations of poroelastic plate[J].Acta Mech,1994,103(1/4): 191-203.
  • 2Anke B,Martin S,Heinz A.A poroelastic Mindlin-plate[J].Proc Appl Math Mech,2003,3(1): 260-261.
  • 3杨骁,李丽.不可压饱和多孔弹性梁、杆动力响应的数学模型[J].固体力学学报,2006,27(2):159-166. 被引量:26
  • 4FENG Kang.On difference schemes and symplectic geometry[C]//Proceeding of the 1984 Beijing Symposium on D D.Beijing: Science Press,1984: 42-58.
  • 5Marsden J E,Patriek G P,Shkoller S.Multisymplectic geometry,variational integrators,and nonlinear PDEs[J].Comm Math Phys,1998,199(2): 351-395.
  • 6Marsden J E,Patriek G P,Shkoller S.Variational methods,multisymplectic geometry and mechanics[J].J Geom Phys,2001,38(2): 253-284.
  • 7Bridges T J.Multi-symplectic structures and wave propagation[J].Math Proc Cambridge Philos Soc,1997,121(1): 147-190.
  • 8Bridges T J,Reich S.Multi-symplectic integrator: numerical schemes for Hamiltonian PDE that conserve symplecticity[J].Physics Letters A,2001,284(4/5): 184-193.
  • 9Reich S.Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations[J].J Comput Phys,1999,157(2): 473-499.
  • 10胡伟鹏,邓子辰,李文成.膜自由振动的多辛方法[J].应用数学和力学,2007,28(9):1054-1062. 被引量:12

二级参考文献59

  • 1杨骁,李丽.不可压饱和多孔弹性梁、杆动力响应的数学模型[J].固体力学学报,2006,27(2):159-166. 被引量:26
  • 2张燕,杨骁,李惠.不可压饱和多孔弹性简支梁的动力响应[J].力学季刊,2006,27(3):427-433. 被引量:6
  • 3Biot M A. General theory of three-dimensional consolidation. J Appl Phys, 1941, 12:155 - 164.
  • 4Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous Media. I Low Frequency Range, J Acoust Soc Aml, 1956, 28:168 - 178.
  • 5Bowen RM. Incompressible porous media models by use of the theory of mixtures. Int J Engng Sci, 1980, 18:1129 -1148.
  • 6Bowen R M. Compressible porous media models by use of the theory of mixtures. Int J Engng Sci, 1982, 20:697-735.
  • 7De Boer R. Highlights in the historical development of the porous media theory -toward a consistent macroscopic theory. Appl Mech Rev, 1996, 49:201 - 262.
  • 8De Boer R. Contemporary progress in porous media theory. Appl Mech Rev, 2000, 53:323 - 370.
  • 9De Boer R, Ehlers W, Liu Z. One-dimensional transient wave propagation in fluid-saturated incompressible porous media. Archive Appl Mech, 1993, 63:59 - 72.
  • 10Liu Z, De Boer R. Dispersion and attenuation of surface waves in a fluid-saturated porous media. Transport in Porous Media, 1997, 29:207 - 223.

共引文献66

同被引文献5

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部