期刊文献+

电场作用下金属串配合物[Cr_3(dpza)_4L_2](L=Cl,NCS)的结构

The structure of metal string complexes Cr_3(dpza)_4L_2(dpza=dipyrazylamine,L=Cl,NCS) under the electric field
原文传递
导出
摘要 用UBP86方法研究了金属串配合物[Cr_3(dpza)_4Cl_2](1)和[Cr_3(dpza)_4(NCS)_2](2)在外电场作用下的几何和电子结构的变化规律。发现随电场增大,高电势端的Cr-Cl和Cr-N键增长,而低电势端的Cr-Cl和Cr-N键缩短。轴向配体L的负电荷由低电势端向高电势端转移,1中原子的自旋密度变化很小,2中低电势端的Cr原子和L的自旋密度变化较明显。随电场增大,分子能量下降,偶极矩呈线性增大:HOMO和HOMO-1轨道能升高且轨道分布移向低电势端,相反,LUMO轨道能减小且轨道分布移向高电势端,使HOMO-LUMO能隙减小,有利于金属链的导电性。电场对2的上述结构和性质的影响尤为显著。 The geometrical and electronic structures of string complexes [Cr_3(dpza)4Cl_2](lS) and [Cr3(dpza)4(NCS)2](2U) were investigated theoxeticaUy with density functional theory UBP86 method by incorporating the external electric field. The electric field results the elongation of Cr-Cl or Cr-N distances at the high potential end while the contraction at the low potential end. The negative charge of L (L=CI, NCS) moves to the high potential side. The spin density of 1S changes a little, while that of 2U at the low potential side is sensitive to the electric field. With the increase of the electric field, the molecular energy decreases and the dipole moment increases linearly. Moreover, the spatial distributions of HOMO(onb) and HOMO-1 (πnb) move to the low potential end with the orbital energies increasing, while that of LUMO changes oppositely. This results in the decreasing of HOMO-LUMO gap which is beneficial to electron-transport properties of the metal string complexes. Above geometric and electric structures of 2U are much more sensitive to the electric field than 1S.
出处 《计算机与应用化学》 CAS 2015年第2期203-207,共5页 Computers and Applied Chemistry
基金 广东省自然科学基金项目(S2012010008763) 广东省教育部产学研结合项目(2010B090400184) 广州市科技攻关项目(2011J4300063)资助
关键词 分子导线 金属串配合物 电场作用 密度泛函理论 molecular wire metal string complex electric field density functional theory
  • 相关文献

参考文献4

二级参考文献80

  • 1吴德有,张天乐.线性低价铂系金属簇合物的研究[J].化学进展,2004,16(6):911-917. 被引量:2
  • 2李延伟,章岩,尹鸽平,赵健伟.电场作用下分子导线的理论研究[J].高等学校化学学报,2006,27(2):292-296. 被引量:10
  • 3Hurley T. J. , Robinson M. A.. Inorg. Chem. [J], 1968, 7(1) : 33-38.
  • 4Wu L. P. , Field P. , Morrissey T. , Murphy C. , Nagle P. , Hathaway B , Simmons C. , Thomton P.. J. Chem. Soc. , Dalton Trans. [J], 1990, 12:3835-3840.
  • 5Aduldeeha S. , Hathaway B.. J. Chem. Soc. , Dalton Trans. [J], 1991,4:993-998.
  • 6Cotton F. A. , Daniels L. M. , Jordan IV G. T.. Chem. Commun. [J] , 1997:421-422.
  • 7Yang E. C. , Cheng M. C. , Tsai M. S. , Peng S. M.. J. Chem. Soc. , Chem. Commun. [J], 1994:2377-2378.
  • 8Sheu J. T. , Lin C. C. , Chao I. , Wang C. C. , Peng S. M.. Chem. Commun. [J] , 1996:315-316.
  • 9LaiS. Y., LinT. W., ChenY. H., WangC. C., LeeG. H., YangM., LeungM., PengS. M.. J. Am. Chem. Soc.[J], 1999, 121( 1 ) : 250-251.
  • 10Shieh S. J., Chou C. C., Lee G. H., Wang C. C., Peng S. M.. Angew. Chem. Int. Ed. Engl. [J], 1997, 36(112): 56-59.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部