期刊文献+

基于智能算法的M-FMUAV巡飞路径规划 被引量:1

Minitype Folding Wing Morphing UAV( M-FMUAV) Loitering Path Planning Based on Intelligent Algorithm
下载PDF
导出
摘要 小型折翼变体无人飞行器(Mini-Folding Wing Morphing Unmanned Aerial Vehicles,M-FMUAV)通常要在有限的巡飞航程中对指定目标区进行全面探测,为了有效地完成侦查任务,需要使规划的路径最短。规划的整条路径一般可分为直线段和转弯段,在直线段进行位置和偏差角控制,转弯段采用转弯控制,平滑路径使路径满足飞行性能。利用智能优化算法解决巡飞区最短路径问题,并从运算速度、收敛速度和路径最优率等方面对几种智能优化算法进行了比较,为折翼变体无人飞行器的推广应用提供了参考依据。 Minitype Folding Wing Morphing UAV( M-FMUAV) usually implements a comprehensive detection in limited loitering flight route. In order to complete effectively reconnaissance tasks,it is necessary to enable the shortest path planning. The planned path can be divided into straight segment and the turn segment. The position and deviation control can be used in straight segment and the turn control can be used in turn segment. The smoothing path is implemented to meet the flight performance. This paper uses the intelligent optimization algorithm to solve the problem of shortest path in loitering flight area and compares several algorithms from the aspects of calculation speed,convergence rate and optimal path rate,which provides the reference for the popularization and application of M-FMUAV.
出处 《无线电工程》 2015年第3期67-71,80,共6页 Radio Engineering
基金 博士后科学基金面上资助项目(2013M532149)
关键词 折翼变体 巡飞区 最短路径 优化算法 folding wing morphing loitering area shortest path optimization algorithm
  • 相关文献

参考文献11

二级参考文献26

  • 1郭美芳,范宁军,袁志华.巡飞弹战场运用策略[J].兵工学报,2006,27(5):944-947. 被引量:15
  • 2Overmars M H, Svestka EA probabilistic learning approach to motion planning[C]//Proc Workshop Algorithmic Foundations Robotics, Houston, Texas, 1994,.
  • 3Boor V, Overmars M H, van der Stappen A F.The Gaussian sampling strategy for probabilistic roadmap planners[C]//Proc IEEE Int Conf on Robotics and Automation, Detroit, Michigan, 1999: 1018-1023.
  • 4Nissoux C, Simeon T, Laumond J P.Visibility based probabilistic roadmaps[C]//Proc IEEE Int Conf on Intelligent Robots and Systems, 1999:1316-1321.
  • 5Hsu D, Jiang Ting-ting, Reif J, et al.The bridge test for sampling narrow passages with probabilistic roadmap planners[C]// Proc IEEE Int Conf on Robots and Automation,Taipei,Taiwan, 2003 : 4420-4426.
  • 6Thomas S,Morales M, Tang Xin-yu, et al.Biasing samplers to improve motion planning performance[C]//IEEE Int Conf on Robots and Automation,Roma,Italy,2007:1625-1630.
  • 7Geraerts R, Overmars M H.A comparative study of probabilistic roadmap planners[C]//Algorithrnic Foundations Robotics, 2004: 43-57.
  • 8Wang Zhen-hua,Zhang Wei-guo, Shi Jing-ping,et al.UAV route planning using multiobjective ant colony system[C]//IEEE Int Conf on Cybemetics and Intelligent Systems, Chengdu, China, 2008: 797-800.
  • 9玄光男 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 10[美]Michalewiczz FogelDB著 曹宏庆 李艳 董红斌 译.如何求解问题-现代启发式方法[M].北京:中国水利水电出版社,2003..

共引文献49

同被引文献14

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部