摘要
建立了一个无标度网络上带有时滞的SIRS模型,并分析了在度不相关情况下模型的动力学性态.当基本再生数R_0<1时,模型只有无病平衡点,运用Jacobi矩阵和Lyapunov泛函得出无病平衡点的全局稳定性;当R_0>1时,无病平衡点不稳定,存在唯一地方病平衡点且是持续的.
In this paper, we consider an SIRS epidemic model with time-delay on an uncorrelated Scale-Free network, and investigate the dynamical behavior of the model. When the basic reproduction number is less than unity, by analyzing Jacobi matrix and Lyapunov function, the global asymptotic stability of disease-free equilibrium is established. On the other hand, there is a unique endemic equilibrium when the basic reproduction number is greater than unity. That the disease is permanent is also obtained.
出处
《数学的实践与认识》
北大核心
2015年第3期308-314,共7页
Mathematics in Practice and Theory
基金
国家自然科学基金(11371313)
关键词
无标度网络
时滞
基本再生数
全局稳定
持续性
Scale-Free Network
time-delay
the basic reproduction number
global stabilitypermanence