期刊文献+

到时差计算中并行相关算法实验及性能分析 被引量:1

下载PDF
导出
摘要 针对震动波波速成像过程中遇到的海量数据处理问题,提出了分布式实现到时差相关运算,提出了在Map Reduce框架下到时差计算的程序设计思路,并在hadhoop环境下进行测试。测试结果表明使用Map Reduce作为海量传感器数据的处理框架是可行的;在进行并行的到时差相关运算时,hadoop集群运算所需时间受待计算数据量和data node个数的影响,待计算数据量越大,或data node个数越少,运算所需时间越长,但这两组关系均非线性;平均Map时间与待计算数据量和data node个数无关,仅与Map函数的执行内容有关。
出处 《物联网技术》 2015年第2期52-55,共4页 Internet of things technologies
基金 国家重点基础研究计划"973计划"<深部危险煤层无人采掘装备关键基础研究>(2014CB046300) "十二五"国家科技支撑计划资助项目(2012BAH12B01 2012BAH12B02)
  • 相关文献

参考文献7

  • 1Xiang Z, Ce Y.Fast n-point correlation function approximation withrecursive convolution for scalar fields[C].IEEE 3rd InternationalConference on Cloud Computing Technology and Science(CloudCom 2011), Los Alamitos, USA : IEEE Computer Society,2011.
  • 2靳朋飞,曹菡,余婧,崔云飞.MapReduce模型下Voronoi图栅格生成算法[J].计算机科学与探索,2013,7(2):160-168. 被引量:2
  • 3贾宝新.矿震监测的理论与应用研究 [D].阜新:辽宁工程技术大学,2013.
  • 4刘义,景宁,陈荦,熊伟.MapReduce框架下基于R-树的k-近邻连接算法[J].软件学报,2013,24(8):1836-1851. 被引量:60
  • 5Afrati F N, Ullman J D.Optimizing joins in a map-reduceenvironment[C].13th International Conference on ExtendingDatabase Technology : Advances in Database Technology,Lausanne, Switzerland : Association for Computing Machinery,2010.
  • 6顾汉明,周鸿秋,张学强.初至时间的自动拾取[J].物探与化探,1992,16(2):120-129. 被引量:12
  • 7Joshi S B.Apache hadoop performance-tuning methodologies and best practices[C].3rd Joint WOSP/SIPEW International Conferenceon Performance Engineering, Boston, United states : Associationfor Computing Machinery,2012.

二级参考文献19

  • 1Bohm C, Krebs F. The k-nearest neighbor join: Turbo charging the KDD process. Knowledge Information System, 2004,6(6): 728-749. [doi: 10.1007/s10115-003-0122-9].
  • 2Xia CY, Lu HJ, Coi BC, Hu J. Gorder: An efficient method for KDD joins processing. In: Proc. of the 30th Int'l Conf. on Very Large Data Bases (VLDB). 2004. 756-767.
  • 3Yao B, Li FF, Kumar P. K nearest neighbor queries and KNN-joins in large relational databases (almost) for free. In: Proc. of the 26th Int'l Conf. on Data Engineering (ICDE). 2010.4-15. [doi: 10.1109/ICDE.2010.5447837].
  • 4Yu C, Cui B, Wang SG, Su JW. Efficient index-based KNN join processing for high-dimensional data. Information and Software Technology, 2007,49(4):332-344. [doi: 10.1016/j.infsof.2006.05.006].
  • 5Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. Communications of the ACM, 2008,51(1):107-113 [doi: 10.1145/1327452.1327492].
  • 6White T. Hadoop: The Definitive Guide. Sebastopol: Yahoo! Press, 2009.
  • 7Zhang C, Li FF, Jestes J. Efficient parallel kNN joins for large data in MapReduce. In: Proc. of the 15th Int'l Conf. on Extending Database Technology (EDBT). 2012.38-49. [doi: 10.1145/2247596.2247602].
  • 8Lu W, Shen YY, Chen S, Col BC. Efficient processing of k nearest neighbor joins using MapReduce. In: Proc. of the 38th lnt'l Conf. on Very Large Data Bases (VLDB). 2012. 1016-1027.
  • 9Liu Y, Jing N, Chen L, Chen HZ. Parallel bulk-loading of spatial data with MapReduce: An R4ree case. Wuhan University Journal of Natural Sciences, 2011,16(6):513-519. [doi: 10.1007/s11859-011-0790-3].
  • 10Tao YF, Papadias D. Range aggregate processing in spatial databases. IEEE Trans. on Knowledge and Data Engineering, 2004, 16(12):1555-1570. [doi: 10.1109/TKDE.2004.93].

共引文献71

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部