摘要
启发式流程挖掘算法在日志噪音与不完备日志的处理方面优势显著,但是现有算法对长距离依赖关系以及2-循环特殊结构的处理存在不足,而且算法未进行并行化处理.针对上述问题,基于执行任务集将流程模型划分为多个案例模型,结合改进的启发式算法并行挖掘各个案例模型所对应的C-net模型;再将上述模型集成得到完整流程对应的C-net.同时,将长距离依赖关系扩展为决策点处两个任务子集之间的非局部依赖关系,给出了更为准确的长距离依赖关系度量指标和挖掘算法.上述改进措施使得该算法更为精确、高效.
Heuristic process mining algorithm has a significant advantage in dealing with noise and incomplete logs. However, existing heuristic process mining algorithms cannot handle long-distance dependencies and lenth-2-loop structures correctly in some special situations. Besides, none of them are parallelized. To address the problems, process models are divided into multiple case models according to executed activity set at first. Then the C-nets corresponding to case models are discovered with an improved heuristic process mining algorithm in parallel. After that, these C-nets are integrated to derive the complete process model. Meanwhile, the definition of long- distance dependencies is extended to non-local dependencies between two activity sets in decision points, In addition, a more accurate longdistance dependency metrics and its corresponding mining algorithm are presented. These improvements make the proposed algorithm more accurate and efficient.
出处
《软件学报》
EI
CSCD
北大核心
2015年第3期533-549,共17页
Journal of Software
基金
国家自然科学基金(61170079
61202152
61472229
61472284)
山东省科技发展项目(2014GGX101035)
山东省优秀中青年科学家科研奖励基金(BS2014DX013)
青岛市科技计划基础研究项目(13-1-4-153-jch
2013-1-24)
同济大学嵌入式系统与服务计算教育部重点实验室开放课题基金(ESSCKF201403)
山东科技大学群星计划(qx2013113
qx2013354)