期刊文献+

一种并行化的启发式流程挖掘算法 被引量:15

Parallelized Heuristic Process Mining Algorithm
下载PDF
导出
摘要 启发式流程挖掘算法在日志噪音与不完备日志的处理方面优势显著,但是现有算法对长距离依赖关系以及2-循环特殊结构的处理存在不足,而且算法未进行并行化处理.针对上述问题,基于执行任务集将流程模型划分为多个案例模型,结合改进的启发式算法并行挖掘各个案例模型所对应的C-net模型;再将上述模型集成得到完整流程对应的C-net.同时,将长距离依赖关系扩展为决策点处两个任务子集之间的非局部依赖关系,给出了更为准确的长距离依赖关系度量指标和挖掘算法.上述改进措施使得该算法更为精确、高效. Heuristic process mining algorithm has a significant advantage in dealing with noise and incomplete logs. However, existing heuristic process mining algorithms cannot handle long-distance dependencies and lenth-2-loop structures correctly in some special situations. Besides, none of them are parallelized. To address the problems, process models are divided into multiple case models according to executed activity set at first. Then the C-nets corresponding to case models are discovered with an improved heuristic process mining algorithm in parallel. After that, these C-nets are integrated to derive the complete process model. Meanwhile, the definition of long- distance dependencies is extended to non-local dependencies between two activity sets in decision points, In addition, a more accurate longdistance dependency metrics and its corresponding mining algorithm are presented. These improvements make the proposed algorithm more accurate and efficient.
出处 《软件学报》 EI CSCD 北大核心 2015年第3期533-549,共17页 Journal of Software
基金 国家自然科学基金(61170079 61202152 61472229 61472284) 山东省科技发展项目(2014GGX101035) 山东省优秀中青年科学家科研奖励基金(BS2014DX013) 青岛市科技计划基础研究项目(13-1-4-153-jch 2013-1-24) 同济大学嵌入式系统与服务计算教育部重点实验室开放课题基金(ESSCKF201403) 山东科技大学群星计划(qx2013113 qx2013354)
关键词 流程挖掘 启发式挖掘算法 长距离依赖关系 案例模型 案例簇 process mining heuristic mining algorithm long distance dependency case model case cluster
  • 相关文献

参考文献1

二级参考文献17

  • 1曾庆田.过程挖掘的研究现状与问题综述[J].系统仿真学报,2007,19(A01):275-280. 被引量:20
  • 2TURNER C J,TIWARI A,OLAIYA R,et al.Process mining:from theory to practice[J].Business Process Management Journal,2012,18(3):493-512.
  • 3VAN DER AALST W M P,ADRIANSYAH A,DE MEDEIROSA K A,et al.Process mining manifesto[J].Lecture Notes in Business Information Processing,2012,99:170-193.
  • 4ZENG Qingtian,SUN S X,DUAN Hua,et al.Cross-organizational collaborative workflow mining from a multi-source log[J].Decision Support Systems,2013,54(3):1280-1301.
  • 5DUAN Hua,ZENG Qingtian,WANG Huaiqing,et al.Classification and evaluation of timed running logs of workflows based on process mining[J].Journal of Systems and Software,2009,82(3):400-410.
  • 6OMG.Business process modeling notation version 2.0[EB/OL].(2011-01-03).http://www.bpmn.org/spec/BPMN/2.0/.
  • 7VAN DER AALST W M P.Process mining:discovery,conformance and enhancement of business processes[M].Berlin,Germany:Springer-Verlag,2011:125-187.
  • 8VAN DER AALST W M P,WEIJTERS A J M M,MARUSTER L.Workflow mining:discovering process models from event logs[J].IEEE Transactions on Knowledge and Data Engineering,2004,16(9):1128-1142.
  • 9WEN Lijie,WANG Jianmin,SUN Jiaguang.Mining invisible tasks from event logs[J].Lecture Notes in Computer Science,2007,4505:358-365.
  • 10WEN Lijie,WANG Jianmin,VAN DER AALST W M P,et al.A novel approach for process mining based on event types[J].Journal of Intellegent Information Systems,2009,32(2):163-190.

共引文献6

同被引文献89

  • 1郑湘平.基于2013版新规则男子自由体操成套动作难度选择与编排研究[J].成都体育学院学报,2014,40(11):61-67. 被引量:13
  • 2李嘉菲,刘大有,于万钧.一种能发现重复任务的过程挖掘算法[J].吉林大学学报(工学版),2007,37(1):106-110. 被引量:5
  • 3李嘉菲,刘大有,杨博.过程挖掘中一种能发现重复任务的扩展α算法[J].计算机学报,2007,30(8):1436-1445. 被引量:20
  • 4COOK J E, WOLF A L. Discovering models of software pro- cesses from event based data[J]. ACM Transactions on Soft- ware Engineering and Methodology, 1998,7(3) : 215-249.
  • 5AGRAWAL R, GUNOPULOS D, LEYMANN F. Mining pr- ocess models from workflow logs [ M]. Berlin, Germany: Springer-Verlag, 1998.
  • 6DATTA A. Automating the discovery of as-is business proce- ss models..probabilistic and algorithmic approaches[J]. Infor- mation Systems Research,1998,9(3)..275-301.
  • 7BIERMANN A W, FELDMAN J A. On the synthesis of fi- nite-state machines from samples of their behavior[J]. IEEE Transactions on Computers, 1972,100 (6) : 592-597.
  • 8VAN DER AALST W M P. Process mining:discovery, con- formance and enhancement of business processes[M]. Berlin, Germany: Springer-Verlag, 2011.
  • 9VAN DER AALST W M P, WEIJTERS A J M M, MA- RUSTER L. Workflow mining: discovering process models from event logs[J]. IEEE Transactions on Knowledge and Da- ta Engineering, 2004,16 (9) : 1128-1142.
  • 10VAN DONGEN B F, ALVES DE MEDEIROS A K, WEN Li- jie. Process mining overview and outlook of petri net discovery atgorithms[M]//Transactions on Petri Nets and Other Models of Concurrency 11. Berlin, Germany Springer-Verlag, 2009: 225-242.

引证文献15

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部