期刊文献+

非均匀风影响下风力机三维气动粘性流场的数值模拟 被引量:4

Numerical simulation of 3D viscous flow field of wind turbine under nonuniform wind
下载PDF
导出
摘要 基于面向对象的开源软件 OpenFOAM,选择美国国家新能源实验室(NREL)Phase VI 风力机为对象,对以往研究较少的非均匀来流风速作用下风力机三维气动粘性流场进行数值模拟。采用较为接近于真实情况的指数型风剖面,计算了轮毂处风速分别为5、10、15和25 m/ s 四种工况下的叶片表面压力分布、叶片的推力、尾涡等气动力数据,并与均匀来流风速下的风力机气动力学性能进行详细的对比,探讨非均匀风剖面对风力机流场结构和流动特性影响的物理现象和规律。 A numerical simulation of 3D viscous flow field around NREL Phase VI wind turbine was carried out with open source software OpenFOAM under nonuniform wind conditions, about which little research has been done. Exponential wind profile which is close to real situations is chosen. Based on this hypothesis, the following aerodynamic results were analyzed, such as the pressure coefficient distribution at different sections, and rotor thrust and wake structures at mean wind speeds of 5 m/ s, 10 m/ s, 15 m/ s and 25 m/ s respectively. At the same time, the results under nonuniform wind conditions were compared with those under uniform conditions to deepen the understanding of the shear wind effects on the flow structure and flow characteristic around the wind turbine.
出处 《海洋工程》 CSCD 北大核心 2015年第1期90-99,124,共11页 The Ocean Engineering
基金 国家自然科学基金项目(51379125,51411130131,11432009) 上海高校特聘教授(东方学者)岗位跟踪计划(2013022) 国家重点基础研究发展计划(973计划)项目(2013CB036103) 工信部高技术船舶科研项目 美国船级社(AB)中国有限公司 上海交通大学高性能计算中心(HPC)的资助
关键词 风力机 非均匀风 OPENFOAM 空气动力特性 风能开发 海上风电 wind turbine nonuniform wind OpenFOAM aerodynamic performance wind energy development offshore wind power
  • 相关文献

参考文献21

二级参考文献55

共引文献135

同被引文献52

  • 1刘晓辉,高人杰,薛宇.浮式风力发电机组现状及发展趋势综述[J].分布式能源,2020(3):39-46. 被引量:16
  • 2JONKMAN J M. Modeling of the UAE wind turbine for refinement of FAST_AD[M]. Colorado: National Renewable Energy Laboratory, 2003.
  • 3SORENSEN N N, MICHELSEN J A. Schreck Navier- Stokes predictions of the NREL phase VI rotor in the NASA ames 80 ftxl20 ft wind tunnel[J]. Wind Energy, 2002, 5(2-3): 151-169.
  • 4ZHOU H, CAO H J, WAN D C. Numerical predictions of wave impacts on the supporting structures of Shanghai Donghai-Bridge offshore wind turbines[C]. Proceedings of the Twenty-third (2013) International Offshore and Polar Engineering, Anchorage, Alaska, USA, 2013, 216-224.
  • 5ZHAO W C, Wan D C. Wind turbine impacts on its Semi-Submersible floating supporting system for phase II of OC4[C]. Proceedings of the Twenty-fourth (2014) International Ocean and Polar Engineering Conference, Busan, Korea, 2014, 294-301.
  • 6ZHAO W C, CHENG P, WAN D C. Numerical compu- tation of aerodynamic performances of NREL Offshore 5-MW baseline wind turbine[C]. The Proceedings of the Eleventh (2014) Pacific/Asia Offshore Mechanics Sym- posium (PACOMS-2014), Shanghai, China, 2014, 13- 18.
  • 7ZHAO W C, Wan D C. Numerical study of interactions between phase II of OC4 wind turbine and its Semi- Submersible floating support system[J]. Journal of Ocean and Wind Energy, 2015, 2(1): 45-53.
  • 8CHENG P, WAN D C. Hydrodynamic analysis of the semi-submersible floating wind system for phase II of OC4[C]. Proceedings of the Twenty-fifth (2015) Inter- national Ocean and Polar Engineering Conference, Kona, Big Island, Hawaii, USA, 2015, 346-353.
  • 9LI P F, CHENG P, WAN D C, et al. Numerical simula- tions of wake flows of floating offshore wind turbines by unsteady actuator line model[C]. Proceedings of the 9th International Workshop on Ship and Marine Hydro- dynamics (lWSH2015), Glasgow, UK, 2015.
  • 10LI Y, PAIK K J, X1NG T, et al. Dynamic overset CFD simulations of wind turbine aerodynamics[J]. Renewa- ble Energy, 2012, 37(1): 285-298.

引证文献4

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部