期刊文献+

智能小车的路径跟踪控制算法研究 被引量:3

Algorithm of Path Tracking Control of Intelligent Vehicle
下载PDF
导出
摘要 以3轮式智能小车为例,跟踪一条不带时间参数的几何路径,将路径划分成若干个路标节点,在极坐标误差模型下,利用Lyapunov直接法设计出跟踪离散节点的跟踪控制器,最后通过MATLAB仿真平台进行仿真实验。仿真结果表明所设计的跟踪控制律是正确有效的,小车最终能够跟踪到期望的目标点位置。 In this paper,a three wheeled intelligent car was taken as example,the tracking of a geometric path with no time parameters was studied.The path was divided into a number of landmark nodes,based on the polar coordinate error model,a tracking controller to track the discrete nodes was designed by Lyapunov direct method,and the simulation experiment was finally conducted on the MATLAB platform.The simulation results show that the design of the tracking control law is correct and effective,the car is eventually able to track the desired target position.
作者 杨权 蔡勇
出处 《机械工程与自动化》 2015年第1期187-189,共3页 Mechanical Engineering & Automation
关键词 智能小车 路径跟踪 控制律 intelligent car path tracking control law
  • 相关文献

参考文献3

  • 1Kanayama Y, Kimura Y, Miyazaki F, et al. A stable tracking control method for an autonomous mobile robot [C]// Proceedings of the IEEE International Conference on Robotics and Automation. Cincinnati.. IEEE, 1990384-389.
  • 2Brockett R W. Asymptotic stability and feedback stabilization in differential geometric control theory[M]. Boston: Birkhauser,1983:181-191.
  • 3闵颖颖,刘允刚.Barbalat引理及其在系统稳定性分析中的应用[J].山东大学学报(工学版),2007,37(1):51-55. 被引量:106

二级参考文献12

  • 1BELLMAN R.Stability theory of differential equations[M].New York:McGraw-Hill,1953.
  • 2LASALLE J P,LEFSCHETZ S.Stability by Lyapunov's direct method[M].New York:Academic Press,1961.
  • 3DESOER C A,M VIDYASAGAR.Feedback systems:inputoutput properties[M].New York:Academic Press,1975.
  • 4ROUCHE N,HABETS P,M LALOY.Stability theory of Lyapunov direct method[M].New York:Springer,1977.
  • 5ARTlSTEIN Z.Stabilizations with relaxed controls[J].Nonlinear Analysis,1983,7:1163-1173.
  • 6SLOTINE J J E,LI W P.Applied nonlinear control[M].NJ:Prentice Hall,1991.
  • 7KRSTIM,KANELLAKOPOULOS I,KOKOTOVIP V.Nonlinear and adaptive control design[M].New York:John Wiley and Sons,1995.
  • 8KHALIL H K.Nonlinear systems[M].NJ:Prentice Hall,2002.
  • 9TAO G.A simple alternative to the Barbalat lemma[J].IEEE Transactions on Automatic Control,1997,42(5):698.
  • 10TEEL A R.Asymptotic convergence fromstability[J].IEEE Transactions on Automatic Control,1999,44 (11):2169-2170.

共引文献105

同被引文献15

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部