期刊文献+

全心缺血早期阶段室性心律失常仿真研究 被引量:2

Simulation Study of Ventricular Arrhythmia at The Early Stage of Global Ischemic Condition
下载PDF
导出
摘要 为了分析全心缺血早期阶段对心脏电生理活动的影响,以及探讨诱发的室性心律失常机制,本研究考虑了缺血情况下高钾、酸液过多、局部缺氧的情况,结合详细的人类心室细胞生物物理上的动力学特征,开发了一个人体心室细胞和组织全心缺血模型.实验结果表明,全心缺血缩短了动作电位时程(action potential duration,APD),且减缓了兴奋的传导速率(conduction velocity,CV).同时,由于全心缺血降低了动作电位时程曲线(action potential duration restitution,APDR)斜率,且增大了有效不应期(effective refractory period,ERP),因此有利于维持折返波的稳定传导,使得室速不易转化为室颤.另一方面,尽管全心缺血导致了组织易感性的增加,但是由于其需要更长的异位刺激长度来保证折返波的形成,因此也在一定程度上降低了心律失常的发生概率. In this paper, to analyze the functional influence of the early stage of global ischemia on cardiac electrical activity and subsequently on ventricular arrhythmia, we take into account of three main pathophysiological consequences of ischemia: hyperkalaemia, acidosis, and anoxia, and develop a human ventricular cell and tissue ischemic model that combines a detailed biophysical description of the excitation kinetics of human ventricular cells. Based on the model, the APDR curves, ERPR curves, vulnerable window, and CVR curves under control and ischemic condition are computed separately. The experimental results show that global ischemia can reduce APD, and slow down CV. Meanwhile since global ischemia decreases slope of APDR and increases ERP, the induced re-entry can be maintained stably which is not prone to degenerate into ventricular fibrillation. And due to a comparatively longer ectopic stimulation length to ensure the formation of reentry, global ischemia decreases the probability to arrhythmia in some extent although the increased tissue vulnerability.
出处 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2015年第2期189-194,共6页 Progress In Biochemistry and Biophysics
基金 中央高校基本科研业务费专项资金(201413012) 教育部高等学校博士学科点专项科研基金(20131333120018) 河北省科技支撑计划自然科学基金青年基金(F2013203191)资助项目~~
关键词 电生理 人体心室 全心缺血 心律失常 electrophysiology human ventricle global ischemia arrhythmia
  • 相关文献

参考文献16

  • 1Ten Tusscher K H W J, Hren R, Panfilov A V. Organization of ventricular fibrillation in the human heart. Circulation Research, 2007, 100(12): 87-101.
  • 2Gray R A, Pertsov A M, Jalife J. Spatial and temporal organization during cardiac fibrillation. Nature, 1998, 392(6671): 75-78.
  • 3Gray R A, Jalife J, Panfilov A V, et d. Mechanisms of cardiac fibrillation. Science, 1995, 270(5239): 1222-1223.
  • 4Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952. 117(4): 500-544.
  • 5Colli-Franz~ne P, Pavarino L F, Taccardi B. Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models. Math Biosci, 2005, 197 (1): 35-66.
  • 6Ten Tusscher K H W J, Panfilov A V. Altemans and spiral breakup in a human ventricular tissue model. Am J Physiol Heart Circ Physiol, 2006, 291(3): 1088-1100.
  • 7吕伟刚,王宽全,左旺孟,黎捷,张恒贵.心肌缺血下人体心室电生理建模和心电图仿真[J].生物医学工程学杂志,2011,28(6):1200-1206. 被引量:3
  • 8Weiss D, Ifland M, Sachse F B, et al. Modeling of cardiac ischemia in human myocytes and tissue including spatiotemporal electrophysiological variations. Biomed Tech, 2009, 54 (3): 107- 125.
  • 9Ferrero J M, Saiz Jr J, Ferrero J M, et al. Simulation of action potentials fi'om metabolically impaired cardiac myocytes. Role of ATP-sensitive K+ current. Circulation Research, 1996, 79(2): 208- 221.
  • 10Shaw R M, Rudy Y. Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration. Cardiovascular Research, 1997, 35(2): 256-272.

二级参考文献13

  • 1刘泰楗.心肌细胞电生理学[M],北京:人民卫生出版社,2005:89-117.
  • 2HEIDENREICH E A, RODRIGUEZ J F, DOBLARE M, et al. Electrical propagation patterns in a 3D regionally ischemic human heart, a simulation study[C]. Computers in Cardiology, 2009, Park City, 2009, 36: 665-668.
  • 3WEISS J N, VENKATESH N, LAMP S T. ATP-sensitive K^+ channels and cellular K+ loss in hypoxic and ischaemic mammalian ventricle[J]. The Journal of Physiology, 1992, 447: 649-673.
  • 4FERRERO J M Jr, SAIZ J, FERRERO J M, et al. Simulation of action potentials from metabolically impaired cardiac myoeytes, role of ATP-sensitive K^+ current[J].Circulation Research, 1996, 79: 208-221.
  • 5SHAW R M, RUDY Y. Electrophysiologic effects of acute myocardial ischemia: a mechanistic investigation of action potential conduction and conduction failure[J]. Circulation Research, 1997, 80: 124-138.
  • 6GIMA K, RUDY Y. Ionic current basis of electrocardiographic waveforms: A model study[J]. Circulation Research, 2002, 90: 889-896.
  • 7ASLANIDI O V, CLAYTON R H, LAMBERT J L, et al.Dynamical and cellular electrophysiological mechanisms of ECG changes during ischaemia[J]. Journal of Theoretical Biology, 2005, 237z 369-381.
  • 8RODRIGUEZ B, TRAYANOVA N, NOBLE D. Modeling cardiac ischemia[J]. Annals of the New York Academy of Sciences, 2006, 1080:395-414.
  • 9TEN TUSSCHER K, PANFILOV A V. Alternans and spiral breakup in a human ventrieular tissue model[J]. Am J Physiol Heart Circ Physiol, 2006, 291: 1088-1100.
  • 10TEN TUSSCHER K, NOBLE D, NOBLE P J, et al. A model for human ventrieular tissue[J].Am J Physiol Heart Circ Physiol, 2004, 286: 1573-1589.

共引文献2

同被引文献2

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部