期刊文献+

等离子烧结制备CNTs增强Nb/Nb_5Si_3复合材料 被引量:2

Preparation of CNTs Reinforced Nb/Nb_5Si_3 In-situ Composites by Spark Plasma Sintering
原文传递
导出
摘要 采用放电等离子烧结(SPS)技术,在烧结温度为1 500℃,升温速度为150℃/min下,制备了CNTs含量分别为1%、2%和3%的Nb/Nb5Si3复合材料。研究了不同CNTs含量的放电等离子烧结Nb/Nb5Si3复合材料的组织与性能。结果表明,复合材料的组织主要由Nb、α-Nb5Si3和γ-Nb5Si3相组成,当CNTs含量超过2%时复合材料中出现了新相Nb4C3,可能是因为CNTs结构在球磨或烧结的过程中被破坏,与Nb粉发生了化学反应。在烧结工艺参数相同的条件下,随着CNTs含量的增加,复合材料的致密度有所下降,硬度(HRC)先增加,当CNTs的含量约为2%时达到最大为66,含量超过2%时,复合材料的界面结合能力差,致密度降低较多,硬度下降。延长保温时间和增加压力,会使得复合材料的致密度和硬度增大。 CNTs/Nb-20Si composites with 1% ,2 % and 3 % CNTs addition were prepareo at 1500 ℃/rain by spark plasma sintering (SPS), and effects of CNTs content on microstructures and prop- erties of Nb/Nb5Si3 in situ composites were investigated. The results show that the in-situ composites consist of Nb, a-Nb5 Si3 and Y-Nb5 Si3 phase. With CNTs content addition more than 2 %, the new phase Nb4C3 can be observed in the composites, which may be attributed to CNTs structure being destroyed in a ball or sinl;ering process to take place the chemical reaction. At the same sintering process parameters, the densities of the composites are decreased obviously with the increase of CNTs content. The maxi- mum hardness( HRC) 66 of the composites prepared can be presented with 2%addition of CNTs. Howev- er, with CNTs addition more than 2 %, the relative densities and hardness are decreased as a result of poor interracial adhesion. The relative densities and hardness of the composites are increased with the in- crease of holding time and pressure.
出处 《特种铸造及有色合金》 CAS CSCD 北大核心 2015年第2期119-123,共5页 Special Casting & Nonferrous Alloys
基金 国家自然科学基金资助项目(51271091) 江西省教育厅科技项目(GJJ12420)
关键词 放电等离子烧结 碳纳米管 Nb/Nb5Si3复合材料 硬度 Spark Plasma Sintering, CNTs, Nb/Nb5Si3 Composites, Hardness
  • 相关文献

参考文献6

二级参考文献50

共引文献142

同被引文献33

  • 1李铮,蔡晓兰,周蕾,易峰,余明俊.CNTs含量对CNTs/Al5083复合材料力学性能的影响[J].金属热处理,2015,40(1):175-177. 被引量:9
  • 2Choi H J, Min B H, Shin J H,et al. Strengthening in nanostructured 2024 aluminum alloy and its composites containing carbon nano- tubes [ J ]. Composites Part A:Applied Science and Manufacturing, 2011,42(10) :1438 - 1444.
  • 3Yoo S J, Han S H, Kim W J. Strength and strain hardening of alumi- num matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes [J]. Scripta Materialia, 2013,68 ( 9 ) : 711 -714.
  • 4Morsi K, Esawi A M K, Lanka S, et al. Spark plasma extrusion (SPE) of ball-milled aluminum and carbon nanotube reinforced aluminum composites[J].Composites Part A : Applied Science and Manufacturing, 2010,41 ( 2 ) : 322 - 326.
  • 5Alloui D, Bai S, Cheng H M ,et al. Mechanical and electrical prop- erties of a MWNT/epoxy composite [ J ]. Composite science and Technology,2002,62 : 1993 - 1998.
  • 6Sun Hongqi, Wang Shaobin. Research advances in the synthesis of nanocarbon-based photocatalysts and their application for photocat- alytic conversion of carbon dioxide to hydrocarbon thels [ J ]. Energy Fuels,2013,28( 1 ) :22 -36.
  • 7Lu Shaowei, Xu Weikai, Xiong Xuhai,et al. Preparation, magnetism and microwave adsorption performance of ultrathin Fe3Q/carbon nanotube sandwich buckypaper [J]. Journal of Alloys and Com- pounds,2014,606 : 171 - 176.
  • 8Bradbury C R. Hardness of muhi wall carbon nanotubes reinforced aluminium matrix composites [ J ]. J Alloys Compd, 2014, 585 : 362 - 365.
  • 9Peng T, Chang I. Mechanical alloying of multi-walled carbon nano- tubes reinforced aluminum composites powder [ J ]. Powder Techn, 2014,266:7 - 10.
  • 10冯玉贝,原赛男,贾丽娜,郑立静,沙江波,张虎.高铬Nb-Si金属间化合物基复合材料的定向凝固组织[J].复合材料学报,2011,28(3):85-89. 被引量:3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部