期刊文献+

时间序列的表示与分类算法综述 被引量:52

Review of Time Series Representation and Classification Techniques
下载PDF
导出
摘要 时间序列是按照时间排序的一组随机变量,它通常是在相等间隔的时间段内,依照给定的采样率,对某种潜在过程进行观测的结果。时间序列数据广泛地存在于商业、农业、气象、生物科学以及生态学等诸多领域,从时间序列中发现有用的知识已成为数据挖掘领域的研究热点之一。在时间序列表示方面,主要介绍了非数据适应性表示方法、数据适应性表示方法和基于模型的表示方法;针对时间序列的分类方法,着重介绍了基于时域相似性、形状相似性和变化相似性的分类算法,并对未来的研究方向进行了进一步的展望。 Time series is a set of random variables ordered in timestamp.It is often the observation of an underlying process,in which values are collected from uniformly spaced time instants,according to a given sampling rate.Since time series data exist widely in various application domains,such as finance,agriculture,meteorology,biological science,ecology and so on,discovering knowledge from time series has become one of the mainly research fields of data mining.In this paper,a comprehensive review on the existing time series representation and classification research was given.In the term of time series representation,three different categories named non-data adaptive,data adaptive and model based were summarized.A summary of several time series classification method,namely similarity in time,similarity in shape and similarity in change was also provided.
出处 《计算机科学》 CSCD 北大核心 2015年第3期1-7,共7页 Computer Science
基金 北京市自然科学基金(4142042) 中央高校基本科研基金(2014YJS032)资助
关键词 时间序列 时间序列分类 时间序列表示 Time series Time series classification Time series representation
  • 相关文献

参考文献56

  • 1Keogh E,Ratanamahatana C A. Exact indexing of dynamic time warping[J]. Knowledge and Information Systems, 2004,7 (3) : 358 386.
  • 2Hu M, Liu 13. Opinion feature extraction using class sequential rules[C]//AAAI Spring Symposium: Computational Approa ches to Analyzing Weblogs. 2006 : 61-66.
  • 3Bagnall A, Janacek G J, Powell M. A likelihood ratio distance measure for the similarity between the fourier transform of time series[C]//Proceedings of the Advances in Knowledge Disco- very and Data Mining, 9th Pacific-Asia Conference (PAKDD2005). 2005:737 743.
  • 4Mueen A,Keogh E J, Young N. Logical-shapelets: an expressive primitive for time series classification[C]//'Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2011). 2011:1154-1162.
  • 5Wang J, Karypis G. HARMONY: Efficiently mining the best rules for classification[C]//Proceedings of the Fifth SIAM In ternational Conference on Data Mining. 2005:205-216.
  • 6Cheng H, Yan X, Han J, et al. Discriminative frequent pattern analysis for effective classification[C]//Proeeedings of the 23rd International Conference on Data Engineering (ICDE 2007). 2007:716-725.
  • 7Douzal-Chouakria A, Amblard C. Classification trees for time se ries[J] Pattern Recognition, 2012,45 : 1076 1091.
  • 8Ratanamahatana C A,Keogh E, Bagnal A J, et al. A novel bit level time series representation with implications for similarity search and clustering[C]//Proeeedings of 9th Pacific-Asia Con ference on Advances in Knowledge Discovery and Data Mining (PAKDD 2005). 2005 : 771-777.
  • 9Das G, Lin K, Mannila H, et al. Rule discovery from time series [C] // Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD98). 1998:16-22.
  • 10Xing Z, Pei J, Yu P, et al. Extracting interpretable features for early classification on time series[C]//Proceedings of the llth SIAM International Conference on Data Mining (SDM 2011). 2011 : 247-258.

同被引文献387

引证文献52

二级引证文献422

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部