期刊文献+

两类网络图的边-平衡指数集 被引量:3

On Edge-balanced Index Sets of Two Classes of Nested Network Graph
下载PDF
导出
摘要 在较小次幂圈嵌套网络图的基础上,研究了10次幂嵌套网络图的边-平衡指数集。利用基础图、带齿套圈子图、单点扇形子图设计新思路,降低了构造标号图的复杂程度。当n=10为偶数时,提出了新的变换指数方法,简化了证明过程。确定了m模6余1和余3且m大于等于2时(m为圈数)无限路10次幂圈嵌套图的边-平衡指数集,并且解决了这两类幂圈嵌套图的边-平衡指数集的存在性,给出了具体构造方法和公式证明。 On the basis of smaller power-cycle nested network graph,the edge-balanced index sets of ten-power-cycle nested network graph were investigated.It reduces the difficulty of ten-power-cycle nested network graph labeling using the novel design of the basic graph,nested-cycle subgraph with gear and single-point sector subgraph.When nis an even number,a new method of changing index was provided,simplifying the proving process.The edge-balanced index sets of ten-power-cycle nested graph were determined when m≡1,3(mod 6)and m≥2.This paper proved the existence of the edge-balanced index sets of two classes of nested network graph.The computational formulas and the construction of the corresponding graphs were also provided.
出处 《计算机科学》 CSCD 北大核心 2015年第3期245-251,共7页 Computer Science
基金 国家自然科学基金项目(51175153/E050903)资助
关键词 边-友好标号 边-平衡指数集 10次幂圈嵌套图 带齿套圈子图 单点扇形子图 Edge-friendly labeling Edge-balanced index set Ten-power-cycle nested graph Nested-cycle subgraph with gear Single-point sector
  • 相关文献

参考文献16

  • 1Kong M, Lee S M. On edge-balanced graphs[J]. Graph Theory, Combinatoric and Algorithms, 1995,1 : 711-722.
  • 2Chen B L, Huang K C, Lee S M, et al. On edge-balanced muhi- graphs[J]. Journal of Combinatorial Mathematics and Combina- torial Computing, 2002,42 : 177-185.
  • 3Lee A T, Lee S M, Ng H K. On balance index sets of graphs[J]. Journal of combinatorial mathematics and combinatorial compu- ting, 2008,66 : 135-150.
  • 4Kong M, Lee S M, Ng H K. On friendly index sets of 2-regular graphs[J]. Discrete Mathematics, 2008,308 (23) : 5522-5532.
  • 5Kim S R, Lee S M, Ng H K. On Balancedness of some graph constructions[J]. Journal of Combinatorial Mathematics and Combinatorial Computing, 2008,66 : 3-16.
  • 6Chopra D, LeeE S M, Su H H. On edge-balance index sets of wheels[J]. International Journal of Contemporary Mathematical Sciences, 2010,5 (53) : 2605-2620.
  • 7Chou C C, Galiardi M, Kong M, et al. On edge-balance index of L-product of cycles with stars,part l[J] JCMCC,2011,78:195- 211.
  • 8Lu J,Zheng Y G. On the edge-balance index sets of B(n)[J].Proceedings of the Jangjeon Mathematical Society, 2009,12 (1) : 37-44.
  • 9Zheng Y G,Lu J,Lee S M,et a[. On the perfect index sets of the Chain-Sum Graphs of the first kind of K_4-e[C]//Second Inter- national Conference on Intelligent Computation Technology and Automation, 2009. IEEE. Zhangjiajie, China: IEEE Press, 2009 : 586-589.
  • 10Wang Y,Zheng Y G, Adiga C, et al. On the edge-balance index sets of N cycles three nested graph (N : 0,1,2 (mod 6 ) ) [J]. Ad- vanced Studied in Contemporary Mathematics, 2011,21 (1) : 85-93.

二级参考文献11

  • 1Kang M, Lee S M. On Edge-Balanced Graphs[J]. Graph Theory,Combinatori and Algorithms, 1995,1: 711-722.
  • 2Chen B L, Huang K C, Lee S M. On edge-balanced multigraphs[J]. Journal of Combinatorial Mathemat- ics and Combinatorial Computing, 2002,42 : 177-185.
  • 3LeeANT, LeeSM, Ng H K. On The Balance In- dex Set of Graphs[J]. Journal of Combinatorial Math- ematics and Combinatorial Computing, 2008, 66:135- 150.
  • 4Kwong H, Ng H K. On friendly index sets of 2-reg- ular graphs[J]. Discrete Mathematics, 2008, 3 (23) 5522-5532.
  • 5Salehi E, Lee S M. Friendly index sets of trees[J]. Congressus Numerantium 2006,178 : 173-183.
  • 6KimS R, Lee S M, Ng H K. On Balaneedness of Some Graph Constructions[J]. Journal of Combinato- rial Mathematics and Combinatorial Computing, 2008, 66:3-16.
  • 7Chopra D, Su H H, Lee S M. On edge-balance index sets of wheels [J]. lnt J Contemp Math Sciences, 2010, 5(53) :2605-2620.
  • 8Chou C C, Galiardi M, Kong M, etal. On edge-bal- ance index sets of L-product of cycles with stars, Part 1[J]. JCMCC, 2011, 78:195 211.
  • 9. Lu J , Zheng Y G. On the edge-balanee index sets B (n)[J]. Proceedings of the Jangjeon Mathematics Society, 2009,12(1) :37-44.
  • 10Wang Y, Zheng Y G, Adiga C, et al. ()n edge-bal- ance index sets of N cycles there nested graph (n::O, 1,2 ( mod6 ) ) [J]. Advanced Studied in Contemporary Mathematics ( Kyungshang ), 2011, 21 ( 1 ) : 85 - 93.

共引文献4

同被引文献16

  • 1LO S.On edge-graceful labelings of graphs[J].Congr Numer,1985,50(1):231-241.
  • 2LEE S M,SU H H.On balance index sets of disjoint union graphs[J].Congressus Numerantium,2009,199(12):97-120.
  • 3LEE A T,LEE S M,NG H K.On balance index sets of graphs[J].Journal of Combinatorial Mathematics and Combinatorial Computing,2008,66(3):135-150.
  • 4KONG M,LEE S M,NG H K.On friendly index sets of 2-regular graphs[J].Discrete Mathematics,2008,308(23):5522-5532.
  • 5KIM S R,LEE S M,NG H K.On balancedness of some graph constructions[J].Journal of Combinatorial Mathematics and Combinatorial Computing,2008,66(3):3-16.
  • 6CHOPRA D,LEE S M,SU H H.On edge-balance index sets of wheels[J].International Journal of Contemporary Mathematical Sciences,2010,5(53):2605-2620.
  • 7CHOU C C,GALIARDI M,KONG M,et al.On edge-balance index of L-product of cycles with stars,part 1[J].Journal of Combinatorial Mathematics and Combinatorial Computing,2011,78(3):195-211.
  • 8LU Juan,ZHENG Yuge.On the edge-balance index sets ofB(n)[J].Proceedings of the Jangjeon Mathematical Society,2009,12(1):37-44.
  • 9ZHENG Yuge,LU Juan,LEE S M,et al.On the perfect index sets of the chain-sum graphs of the first kind ofK(4)-e[C] //ICICTA:2009Second International Conference on Intelligent Computation Technology and Automation,Vol IV,Proceedings,China:IEEE Press,2009:586-589.
  • 10WANG Ying,ZHENG Yuge,ADIGA C,et al.On the edge-balance index sets ofNcycles three nested graph(N=0,1,2(mod 6))[J].Advanced Studied in Contemporary Mathematics,2011,21(1):85-93.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部