期刊文献+

使用二分图网络提高协同推荐的准确性 被引量:6

Using Bipartite Network for Enhancement of Collaborative Filtering
下载PDF
导出
摘要 协同过滤是推荐系统中广泛使用的最成功的推荐技术,但却面临着严峻的稀疏性问题。评分数据稀疏性使得最近邻搜寻不够准确,导致推荐质量较差。使用二分图网络缓解协同过滤推荐系统中的稀疏性问题,即将用户和项目抽象为二分图网络中的节点,重新分配项目资源并计算项目间资源贴近度,据此填充用户未评分项目,将稀疏评分矩阵转化为完全矩阵。采用近邻传播聚类对评分矩阵进行聚类,提高算法的可扩展性。最后提出了两种不同的在线推荐策略:(1)通过加权目标用户所在类的邻居用户评分产生推荐(BNAPC1);(2)通过各个类的总体偏好产生推荐(BNAPC2)。在MovieLens和Netflix数据集上进行了实验,结果表明BNAPC1的预测精度优于BNAPC2,且与其他几种常用的推荐算法相比仍具有一定优势。 Collaborative filtering is one of the most successful and widely used techniques among recommender systems.However,it suffers from serious problem in sparsity.Sparsity in ratings makes the formation of neighborhood inaccurate,thereby resulting in poor recommendations.In this paper,bipartite network was used to alleviate the sparsity problem in collaborative filtering.Users and items are mapped to nodes in bipartite network,and resources on items are redistributed.Resource approach degree between items is computed,and the original rating matrix is converted to complete matrix based on the resource approach degree.Then affinity propagation clustering was applied to cluster the rating matrix to improve the scalability of our approach.Finally,two different recommendation methods were presented.One is generating recommendations according to neighbors in the cluster which active user belongs to(BNAPC1),and the other is generating recommendations according to clusters’ preferences(BNAPC2).Experiments on MovieLens and Netflix datasets show that BNAPC1 is more accurate than BNAPC2,and is also superior to existing alternatives.
出处 《计算机科学》 CSCD 北大核心 2015年第3期256-260,共5页 Computer Science
基金 国家自然科学基金项目(71201145) 教育部人文社会科学研究基金项目(11YJC630283) 上海高校选拔培养优秀青年教师科研专项基金项目(sdl10021) 上海市教育委员会科研创新项目(15ZS064)资助
关键词 推荐系统 协同过滤 二分图网络 近邻传播聚类 Recommender systems Collaborative filtering Bipartite network Affinity propagation clustering
  • 相关文献

参考文献2

二级参考文献44

  • 1周涛,柏文洁,汪秉宏,刘之景,严钢.复杂网络研究概述[J].物理,2005,34(1):31-36. 被引量:240
  • 2胡海波,王林.幂律分布研究简史[J].物理,2005,34(12):889-896. 被引量:87
  • 3赵金山,狄增如,王大辉.北京市公共汽车交通网络几何性质的实证研究[J].复杂系统与复杂性科学,2005,2(2):45-48. 被引量:45
  • 4Xu HL,Wu X,Li XD,Yan BP.Comparison study of Internet recommendation system.Journal of Software,2009,20(2):350-362 (in Chinese with English abstract).http://www.jos.org.cn/1000-9825/3388.htm[doi:10.3724/SP.J.1001.2009.03388].
  • 5Marlin B.Collaborative Filtering:A machine learning perspective[MS.Thesis].Toronto:University of Toronto,2004.
  • 6Hofmann T.Latent semantic models for collaborative filtering.ACM Trans.on Information System,2004,22(1):89-115.[doi:10.1145/963770.963774].
  • 7Blei DM,Ng AY,Jordan MI.Latent Dirichlet allocation.Journal of Machine Learning Research,2003,3(3):993-1022.[doi:10.1162/ jmlr.2003.3.4-5.993].
  • 8Netflix update:Try this at home.2006.http://sifter.org/~simon/journal/20061211.html.
  • 9Zhang S,Wang WH,Ford J,Makedon F.Learning from incomplete ratings using non-negative matrix factorization.In:Ghosh J,ed.Proc.of the 6th SIAM Conf.on Data Mining.Bethesda:SIAM,2006.549-553.
  • 10Cheng YZ,Church GM.Biclustering of expression data.In:Bourne PE,ed.Proc.of the 8th Int'l Conf.on Intelligent Systems for Molecular Biology.La Jolla:AAAI Press,2000.93-103.[doi:10.1016/j.ipm.2008.12.004].

共引文献94

同被引文献55

  • 1张光卫,康建初,李鹤松,刘常昱,李德毅.面向场景的协同过滤推荐算法[J].系统仿真学报,2006,18(z2):595-601. 被引量:27
  • 2李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:903
  • 3张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:197
  • 4Adomavicius G, Tuzhilin A. Toward the next generation of recom- mender systems: a survey of the state-of-the-art and possible exten- sions [ J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(6) :734-749.
  • 5Leung C W K,Chan S C F,Chung F L. A collaborative filtering frame- work based on fuzzy association rules and multiple-level similarity [ J ]. Knowledge and Information Systems ,2006,10 (3) :357-381.
  • 6Luo H,Niu C Y,Shen R M,et al. A collaborative filtering frame- work based on both local user similarity and global user similarity J ]. Machine Learning,2008,72 (3) :231-245.
  • 7Sarwar B, Karypis G, Konstan J, et al. Analysis of recommendationalgorithms for e-commerce [ C]. Proceedings of the 2nd ACM Con- ference on Electronic Commerce ,2000 : 158-167.
  • 8AL-SHAMRI M Y H. Power coefficient as a similarity measure for memory-based collaborative recommender systems [ J ]. Expert Sys- tems with Applications ,2014,41 ( 13 ) :5680-5688.
  • 9Lee S K, Cho Y H, Kim S H. Collaborative filtering with ordinal scale-based. implicit ratings for mobile music recommendations [ J]. Information Sciences ,2010,180( 11 ) :2142-2155.
  • 10Bobadilla J,Ortega F,Hemando A. A collaborative filtering similar- ity measure based on singularities [ J]. Information Processing and Management,2012,48 (2) :204-217.

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部