期刊文献+

一种新的基于稀疏分解的图像放大方法

Novel Image Zooming Method Based on Sparse Decomposition
下载PDF
导出
摘要 提出了一对新的冗余离散小波变换(RDWT)和波原子变换(WAT)字典,并将其应用于图像稀疏形态成分分解以获得图像的卡通与纹理成分。并针对卡通和纹理所具有的不同形态学特征,对卡通成分采用具有曲率运动、边缘冲击特性和平滑去噪性能的非线性self-snake模型来放大;对纹理成分采用双三次插值方法来放大,最后通过叠加就可获得放大图像。实验结果表明,这种基于新字典对的稀疏形态成分分解的图像放大方法相比于传统的基于整幅图像的放大方法能够有效地保护小曲率和大梯度,强化图像边缘,保证纹理细节清晰完整。 Two new dictionaries,RDWT and WAT,were proposed in this paper,and we used them to sparsely decompose one image into cartoon component and texture component.Based on the fact that the cartoon and texture in one image have different morphological characteristics,we zoomed the cartoon by self-snake model with the characteristics of curvature motion,edge shock and smooth denoising,and zoomed the texture by bicubic interpolation.Through superposing the zoomed cartoon and texture,the zoomed image will be obtained.The experiment results show,compared with the traditional zooming methods processing the whole image,the new zooming model based on morphological component decomposition has good performance for enhancing edge,protecting small curvature and large gradient,and ensuring the texture clear and completion.
出处 《计算机科学》 CSCD 北大核心 2015年第3期271-273,279,共4页 Computer Science
基金 陕西省自然科学基金项目(2014JM8341 2010JM8026)资助
关键词 图像放大 稀疏表示 RDWT WAT self-snake模型 Image zooming Sparse representation RDWT WAT Self-snake model
  • 相关文献

参考文献12

  • 1程光权,成礼智.基于小波的方向自适应图像插值[J].电子与信息学报,2009,31(2):265-269. 被引量:30
  • 2祝轩,张申华,王蕾,雷文娟.基于self-snake模型的图像放大[J].西北大学学报(自然科学版),2010,40(1):73-75. 被引量:2
  • 3Starck J L, Elad M, Donoho D L. Redundant multiscale trans- forms and their application for morphological component separa- tion[J]. Advances in Imaging and Electron Physics, 2004, 132 (35) :287-348.
  • 4Meyer Y. Oscillating patterns in image processing and nonlinear evolution equations [M]. Boston: American Mathematical Socie- ty, 2002.
  • 5Chan T F, Shen J H. Mathematical models for local non-texture inpainting[J]. SIAM J. Appl. Math,2001,62(6):1019-1043.
  • 6Zhu Xuan, Wang Ning, En-biao, et al. Image decomposition model combined with sparse representation and total variation[C]// Proceeding of the IEEE International Conference on Informationand Automation. Yinchuan, China, 2013 : 86-91.
  • 7李德强,吴永国,罗海波.基于冗余离散小波变换的信号配准及分类[J].自动化学报,2011,37(1):61-66. 被引量:8
  • 8刘国军,冯象初,张选德.波原子纹理图像阈值算法[J].电子与信息学报,2009,31(8):1791-1795. 被引量:4
  • 9Mallat S G, Jaggi S, Karl W, et al. High resolution pursuit for {eature extraction[J] Applied and Computational Harmonic A- nalysis, 1998,5(7) :428-449.
  • 10Osher S, Burger M, Goldfarh D, et al. An iterated regularization method for total variation-based image restoration[J]. SIAM Journal on Muhiscale Modeling and Simulation, 2005,4 (5) :460- 489.

二级参考文献46

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2朱宁,吴静,王忠谦.图像放大的偏微分方程方法[J].计算机辅助设计与图形学学报,2005,17(9):1941-1945. 被引量:49
  • 3Castleman K R. Digital Image Processing. Englewood Cliffs, NJ: Prentice Hall, 1996: 335-343.
  • 4Li X and Orchard M T. New edge directed interpolation. IEEE Trans. on Image Processing, 2001, 10(10): 1521-1527.
  • 5Hwang J W and Lee H S. Adaptive image interpolation based on local gradient features. IEEE Signal Processing Letters, 2004, 11(3): 359-362.
  • 6Temizel A and Vlachos T. Wavelet domain image resolution enhancement. IEE Proceedings-Vision, Image, and Signal Processing, 2006, 153(2): 25-30.
  • 7Wang Q and Ward R K. A new orientation-adaptive interpolation method. IEEE Trans. on Image Processing, 2007, 16(4): 889-900.
  • 8Cheng Cuang-quan and Cheng Li-zhi. A new image compression via adaptive wavelet transform, Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, Beijing, China, Nov. 2-4, 2007, 1560-1564.
  • 9Sweldens W. The lifting scheme: A construction of second generation wavelets. SIAM Journal on Mathematical Analysis, 1998, 29(2): 511-546.
  • 10Muresan D D. Fast edge directed polynomial interpolation. Proceedings of ICIP, Arlington, VA USA, 2005, 2: 990-993.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部