期刊文献+

基于交叉算子的改进人工蜂群算法 被引量:17

Modified artificial bee colony algorithm based on crossover operators
下载PDF
导出
摘要 针对人工蜂群算法存在后期收敛速度慢、局部搜索能力差和易陷入局部最优的问题,提出一种基于交叉算子的改进人工蜂群算法.该算法利用佳点集方法产生初始种群,使得初始化个体尽可能均匀地分布在搜索空间;随机选择食物源位置与当前最优食物源位置进行算术交叉操作,引导群体向全局最优解靠近,提高算法的局部搜索能力和加快收敛速度.通过5个高维标准测试函数的实验结果表明新算法的有效性. Aimed at the problems of standard artificial bee colony(ABC)algorithm,such as the low convergence rate,poor local searching ability and easy to be trapped into local optimums,an improved ABC algorithm is proposed based on crossover operator.In this algorithm,an initial colony is generated with optimal point set method to make the initialized individuals distribute as uniformly in the search space as possibly.The arithmetic crossover operation of randomly selected food source position individual and current optimal food source position is carried out,leading the population to approach closely to the global optimum solution,improving the local searching ability,and accelerating the convergence speed.The experimental results of 5 high-dimensional benchmark functions show that the proposed new algorithm is effective.
作者 王伟 龙文
出处 《兰州理工大学学报》 CAS 北大核心 2015年第1期101-106,共6页 Journal of Lanzhou University of Technology
基金 贵州省科学技术基金(黔科合J字[2013]2082) 贵州省高校优秀科技创新人才支持计划(黔教合KY字[2013]140)
关键词 人工蜂群算法 佳点集方法 算术交叉 优化 artificial bee colony algorithm optimal point set method arithmetic crossover optimization
  • 相关文献

参考文献2

二级参考文献22

  • 1KARABOGA D, BASTURK B. Artificial bee colony(ABC) optimization algorithm for solving constrained optimization problems[C] IILNCS: Advances in Soft Computing: Foundations of Fuzzy Logic and Soft Computing. Berlin: Springer-Verlag, 2007, 4529:789 - 798.
  • 2KARABOGA D, AKAY B B. Artificial bee colony algorithm on training artificial neural networks[C]//2007 IEEE 15th Signal Processing and Communications Applications Conference. New York: IEEE, 2007:818 - 821.
  • 3KARABOGA D, AKAY B B, OZTURK C. Artificial bee colony(ABC) optimization algorithm for training feed-forward neural networks[C] IILNCS: Modeling Decisions for Artificial Intelligence. Berlin: Springer-Verlag, 2007, 4617:318 -319.
  • 4KARABOGA N. A new design method based on artificial bee colony algorithrn for digital IIR filters[J]. Journal of the Franklin Institute, 2009, 346(4): 328 - 348.
  • 5SRINIVASA RAO R, NARASIMHAM S V L, RAMALINGARAJU M. Optimization of distribution network configuration for loss reduc- tion using artificial bee colony algorithm[J]. International Journal of Electrical Power and Energy Systems Engineering, 2008, 1(2): 709 - 715.
  • 6SINGH A. An artificial bee colony algorithm for the leaf-constrained minimum spanning tree problem[J]. Applied Soft Computing, 2009, 9(2): 625 - 631.
  • 7TSAI P W, PAN J S, LIAO B Y, et al. Enhanced artificial bee colony optimization[J]. International Journal of Innovative Computing, Information and Control, 2009, 5(12): 5081 - 5092.
  • 8STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous space[J]. Journal of Global Optimization, 1997, 11(4): 341 -359.
  • 9MENDES R, MOHAIS A S. DynDE: a differential evolution for dynamic optimization problems[C] //2005 IEEE Congress on Evolutionary Computation. New York: IEEE, 2005:2808 - 2815.
  • 10BAO L, ZENG J C. Comparison and analysis of the selection mechanism in the artificial bee colony algorithm[C]/12009 9th International Conference on Hybrid Intelligent Systems. Los Alamitos, CA: IEEE Computer Society, 2009:411 - 416.

共引文献115

同被引文献135

引证文献17

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部