期刊文献+

基于基因表达式编程算法的磨料射流切割深度预测模型 被引量:4

A model for predicting cutting depth of casing using AWJ technique based on gene expression programming algorithm
下载PDF
导出
摘要 针对磨料射流切割套管深度与水力参数、工作参数及磨料参数之间存在复杂的耦合关系及传统预测方法的不足,建立基于基因表达式编程算法的磨料射流切割深度的预测模型。通过将函数表达式基因化,利用选择算子、变异算子、插串算子、变换算子等对群体实施遗传操作,得出最优函数表达式,并将其与人工神经网络预测模型、回归预测模型进行对比分析。结果表明,基于基因表达式编程算法的预测值与试验值的平均误差为3.93%,标准误差为0.251,预测精度明显高于其他预测模型,可直观、准确地反映磨料射流切割深度与水力参数、工作参数及磨料参数之间的关系,为磨料射流切割技术的定量控制提供可靠的理论支撑。 The cutting depth of casing using an abrasive water jet( AWJ) technique is determined by the hydraulic power,the properties of the abrasives used and operation conditions. A prediction model for the cutting depth using the AWJ technique was established based on a gene expression programming algorithm. In the construction of the gene expression of functions,the operators of selection,mutation operator,plugging string,insertion and transform were used to perform the genetic operations in order to obtain an optimal function expression. A comparative analysis of the optimal function expression,an artificial neural network model and an regression correlation model was carried out. The results show that the average error between experimental results and the prediction using the gene expression algorithm is 3. 93%,and the standard error is0. 251,with accuracy significantly higher than that of other prediction models. The gene expression algorithm model proposed can be effectively used to support the quantitative control of casing cutting using the AWJ technique.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第1期60-65,共6页 Journal of China University of Petroleum(Edition of Natural Science)
基金 国家科技重大专项(2011ZX05060) 中央高校基本科研业务费专项(14CX06023A)
关键词 射流 基因表达式编程算法 切割套管 切割深度 预测模型 water jet gene expression programming algorithm casing cutting cutting depth prediction model
  • 相关文献

参考文献20

  • 1周卫东,王瑞和,杨永印,步玉环,曹砚峰.水力参数和磨料参数对前混式磨料射流切割套管的影响研究[J].石油钻探技术,2001,29(2):10-12. 被引量:15
  • 2王瑞和,李罗鹏,周卫东,李华周.磨料射流旋转切割套管试验及工程计算模型[J].中国石油大学学报(自然科学版),2010,34(2):56-61. 被引量:13
  • 3BITTER J.A study of erosion phenomena part I[J].Wear,1963,6(1):5-21.
  • 4FINNIE I.Erosion of surfaces by solid particles[J].Wear,1960,3(2):87-103.
  • 5MILLER A L,ARCHIBALD J H.Measurement of particle velocities in an abrasive jet cutting system:proceedings of the 6th American Water Jet Conference,Houston,TX,Aug.24-27,1991[C].St Louis,MO:Water Jet Technology Association,1991:291-304.
  • 6JUNKAR M,JURISEVIC B,FAJDIGA M,et al.Finite element analysis of single-particle impact in abrasive water jet machining[J].International Journal of Impact Engineering,2006,32(7):1095-1112.
  • 7李罗鹏,周卫东.单个磨料颗粒冲击金属材料深度计算模型[J].石油机械,2013(4):27-30. 被引量:1
  • 8VUNDAVILLI P R,PARAPPAGOUDAR M B,KODALI S P,et al.Fuzzy logic-based expert system for prediction of depth of cut in abrasive water jet machining process[J].Knowledge-Based Systems,2012,27:456-464.
  • 9SRINIVASU D S,RAMESH B N.A neuro-genetic approach for selection of process parameters in abrasive water jet cutting considering variation in diameter of focusing nozzle[J].Applied Soft Computing,2008,8(1):809-819.
  • 10DERIS A M,ZAIN A M,SALLEHUDDIN R.Hybrid GR-SVM for prediction of surface roughness in abrasive water jet machining[J].Meccanica,2013,48(8):1937-1945.

二级参考文献37

共引文献30

同被引文献37

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部