期刊文献+

miR-34a-5p抑制K562细胞红系分化 被引量:4

miR-34a-5p inhibits the erythroid differentiation of K562 cells
下载PDF
导出
摘要 目的探索miR-34a-5p对K562细胞红系分化的影响。方法分别用miR-34a-5p模拟物和反义抑制寡核苷酸转染K562细胞,用real-time PCR法检测过表达或干扰效率,并进一步用流式细胞术和联苯胺染色法检测K562细胞向红系的分化情况;通过Western blot方法检测miR-34a-5p的靶基因。结果 miR-34a-5p在K562细胞红系分化过程中呈现表达下降趋势;在K562细胞中过表达miR-34a-5p可抑制hemin诱导的红系分化(P<0.05);反之,干扰K562内源的miR-34a-5p表达会对K562红系分化产生促进作用(P<0.01);另一方面,miR-34a-5p通过靶向抑制c-MYB的表达抑制细胞向红系分化。结论 miR-34a-5p通过抑制c-MYB在K562细胞早期红系分化过程中发挥促进作用。 Objective To study the effects of microRNA-34a-5p on erythroid differentiation of K562 cells. Methods K562 cells were transfected with the microRNA-34a-5p mimics and antisense inhibitors specifically targeting microRNA-34a-5p,respectively. The effects of over-expression or knocking-down of microRNA-34a-5p were examined by Quantitative RT-PCR. Flow cytometry was performed to detect specific surface marker of erythroid cells.The benzidine staining assay was used to access the differentiation of K562 cells. Western blot was performed to detect miRNA targets. Results microRNA-34a-5p was down-regulated at the early stage of K562 erythroid differentiation. Over-expression of microRNA-34a-5p in K562 cells attenuates erythroid differentiation,in contrast,inhibition of microRNA-34a-5p accelerates erythroid pheotypes in K562 cells. c-MYB was found to be the direct target of microRNA-34a-5p in erythroid cells. Conclusions microRNA-34a-5p regulates early erythroid differentiation of K562 cells via repressing c-MYB.
出处 《基础医学与临床》 CSCD 2015年第2期167-173,共7页 Basic and Clinical Medicine
基金 国家自然科学基金(31201103)
关键词 miR-34a-5p K562 C-MYB 红系分化 miR-34a-5p K562 c-MYB erythroid differentiation
  • 相关文献

参考文献13

  • 1Calin GA, Sevignani C, Dumitm CD, et al. Human mi- croRNA genes are frequently located at fragile sites andgenomie regions involved in cancers [ J ]. Proc Nat| Acad Sci U S A, 2004, 101 : 2999-3004.
  • 2Raver-Shapira N, Marciano E, Meiri E, et al. Transcrip- tional activation of miR-34a contributes to p53-mediated ap- optosis [J]. Mol Cell, 2007, 26: 731-743.
  • 3He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network [ J ]. Nature, 2007, 447: 1130-1134.
  • 4Chen QR, Yu LR, Tsang P, et al. Systematic proteome analysis identifies transcription factor YY1 as a direct target of miR-34a [J]. J Proteome Res, 2011, 10: 479-487.
  • 5Rodriguez-Ubreva J, Ciudad L, van Oevelen C, et al. C/ EBPa-Mediated Activation of miR-34a and miR-223 Inhib- its Lefl Expression to Achieve Efficient Reprogramming into Macrophages [J]. Mol Cell Biol, 2014, 34:1145-1157.
  • 6Navarro F, Gutman D, Meire E, et al. miR-34a contrib- utes to megakaryocytic differentiation of K562 cells inde- pendently of p53 [J]. Blood, 2009, llg: 2181-2192.
  • 7Genuardi M, Tsihira H, Anderson DE, et al. Distal dele- tion of chromosome Ip in ductal carcinoma of the breast [J]. Am J Hum Genet, 1989, 45: 73-82.
  • 8Bagchi A, Mills AA. The quest for the lp36 tumor suppres-sor [J]. Cancer Res, 2008, 68: 2551-2556.
  • 9Vogt M, Munding J, Grtiner M, et al. Frequent concomi- tant inactivation of miR-34a and miR-34b/c by CpG methy- lation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarco- mas [ J ]. Virchows Arch, 2011,458 : 313-322.
  • 10Vegiopoulos A, Garcia P, Emambokus N, et al. Coordi- nation of erythropoiesis by the transcription factor c-myb [J]. Blood, 2006; 107: 4703-4710.

同被引文献36

  • 1Kondo M, Wagers AJ, Manz MG, et al. Biology of hemato- poietic stem ceils and progenitors: implications for clinical application [J]. Annu Rev Immunol, 2003, 21:759-806.
  • 2Cullen SM, Mayle A, Rossi L, et al. Hematopoietic stem cell development : an epigenetic journey [ J ]. Curr Top Dev Biol, 2014, 107:39-75.
  • 3Rasmussen KD, Simmini S, Abreu-Goodger C, et al. The miR-144/451 locus is required for erythroid homeostasis [J]. J Exp Med, 2010, 207:1351-1358.
  • 4Patrick DM, Zhang CC, Tao Y, et al. Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3- 3zeta [J]. Genes Dev, 2010, 24:1614-1619.
  • 5Pase L, Layton JE, Kloosterman WP, et al. miR-451 regu- lates zebrafish erythroid maturation in vivo via its target ga- ta2 [J]. Blood, 2009,113:1794-1804.
  • 6Harigae H. GATA transcription factors and hematological diseases [J]. Tohoku J Exp Med, 2006,210:1-9.
  • 7Kaneko H, Shimizu R, Yamamoto M. GATA factor switc- hing during erythroid differentiation [ J ]. Curr Opin Hema- tol, 2010,17 : 163-168.
  • 8Ohneda K, Yamamoto M. Roles of hematopoietic transcrip- tion factors GATA- I and GATA-2 in the development of red blood cell lineage [ J ]. Acta Haematol, 2002, 108: 237-245.
  • 9de Melo IS, Jimenez-Nufiez MD, Iglesias C, et al. NOA36 protein contains a highly conserved nucleolar localization signal capable of directing functional proteins to the nucleo- lus, in mammalian cells [ J ]. PLoS One, 2013,8 :e59065. doi : 10. 1371/journal. pone. 0059065.
  • 10Chen J, Li XB, Su R, et al. ZNF16 (HZF1) promotes e- rythropoiesis and megakaryocytopoiesis via its regulation on c-KIT gene [ J ]. Biochem J, 2014,458 : 171-183.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部