期刊文献+

青稞HbSnRK2.4的克隆及其序列特征与表达特性分析 被引量:1

Cloning and Characterization of HbSnRK2.4 in Tibetan Hulless Barley(Hordeum vulgare L. var. nudum HK.f.)
下载PDF
导出
摘要 干旱胁迫是制约农作物生产的重要限制因素之一,研究并增强作物的抗旱性具有重要意义。Sn RK2(Sucrose nonfermenting 1-related protein kinase 2)基因编码一类蔗糖非酵解型蛋白激酶,该酶在ABA信号转录途径和抗渗透胁迫中起着重要作用。以青稞(Hordeum vulgare subsp.vulgare)抗旱品种喜马拉雅10号为材料,利用RT-PCR技术克隆获得了Sn RK2基因全长c DNA序列,命名为Hb Sn RK2.4(登录号:KJ699389)。生物信息学分析表明,该基因全长1 310 bp,编码362个氨基酸序列,蛋白分子量为41.94 k D,等电点(p I)为5.96。Prosite Scan分析结果表明,Hb Sn RK2.4含有多个干旱胁迫响应蛋白的作用位点,如酪蛋白激酶Ⅱ磷酸化位点、酪氨酸激酶磷酸化位点、蛋白激酶C磷酸化位点及N-豆蔻酰化位点等。利用实时定量PCR方法研究了Hb Sn RK2.4在干旱胁迫条件下及复水后不同时间点的表达情况,发现Hb Sn RK2.4在土壤绝对含水量为33.4%时表达量最高,随着土壤绝对含水量的下降而下调表达;当达到作物正常生长所需的土壤绝对含水量时又开始上调表达;进行干旱胁迫后(<15.5%)基因表达量下降;复水后8 h时恢复正常表达水平。 Drought stress has become one of the important factors that hamper the production of agriculture. Varieties with enhanced drought resistance can be an effective way to solve this problem. SnRK2 gene encoded a kind of Sucrose non-fermenting 1-related protein kinase,which have been thought to play an important role in the ABA signaling pathways and resistance to osmotic stress. However,the exact mechanism underlining is still to be elusive. We presented the isolation of a new SnRK2 gene from Hordeum vulgare subsp. vulgare, nominated as HbSnRK2.4(Accession No. Kj699389)by RT-PCR. The plants were proved to be highly drought tolerance. The gene was 1 310 base pair in length,encoding a peptide of 362 amino acids,about 41.94 kD in molecular weight and with pI=5.96. Results from Prosite Scan indicated that HbSnRK2.4 contains multiple loci of drought stress response cis-element such as casein Kinase II phosphorylation sites,tyrosine kinase phosphorylation sites,protein kinase c-phosphorylation and n-cardamom acylation locus. Expression patterns of HbSnRK2.4 were also investigated by RT-qPCR at serious waterlogging or drought and various time points after recovery. The highest expression level was observed in plants growing in soil absolute moisture 33.4%,which may brought waterlogging to tibet barley. As soil absolute moisture declined,transcripts decreased sharply. But when the soil water content turned to be normal for Hordeum vulgare(15.5%),HbSnRK2.4 restored to a higher level. When plants were drought stressed(&lt;15.5%of absolute moisture),the gene were repressed again. After recovery from draught stress,the plants possessed a normal expression level of HbSnRK2.4.
出处 《生物技术通报》 CAS CSCD 北大核心 2015年第2期116-121,共6页 Biotechnology Bulletin
基金 "973"计划前期研究专项(2012CB723006) 国家科技支撑计划(2012BAD03B01 2013BAD30B01) 西藏财政专项(2014CZZ001)
关键词 青稞 HbSnRK2.4 基因克隆 干旱胁迫 表达模式 Tibetan hulless barley drought stress gene cloning expression pattern
  • 相关文献

参考文献27

  • 1Wang W, Vinocur B, Altman A. Plant responses to drought, Salinity and extreme temperatures : towards genetic engineering for stress tolerance [ J ] . Planta, 2003, 218 : 1-14.
  • 2Finkelstein R. Abscisic acid synthesis and response [ J ] . The Arab- idopsis Book, 2013, 11 : e0166.
  • 3Hrabak EM, Chan CW, Gribskov M, et al. The Arabidopsis CDPK- SnRK superfamily of protein kinases [ J ] . Plant Physiology, 2003, 132 : 666-680.
  • 4Halford NG, Hey SJ. Snfl-related protein kinases ( SnRKs ) act within an intricate network that links metabolic and stress signalingin plants [ J ] . Biochemical Journal, 2009, 419 : 247-259.
  • 5Park YS, Hung SW, Oh SA, et al. Two putative protein kinases from Arabidopsis thaliana contain highly acidic domains [ J ] . Plant Molecular Biology, 1993, 22 : 615-624.
  • 6Boudsocq M, Droillard MJ, Barbier-Brygoo H, et al. Different phasphorylation mechanisms are involved in the activation of sucrose non-fermenting 1 related protein kinases 2 by osmotic stresses and abscisic acid [ J ] . Plant Molecular Biology, 2007, 63 : 491-503.
  • 7Umezawa T, Yoshida R, Maruyama K, et al. SRK2C, a SNFl-related protein kinase 2, improves drought tolerance by controlling stress- responsive gene expression in Arabidopsis thaliana [ J ] . Proc Natl Acad, 2004, 101 (49) : 17306-17311.
  • 8Kobayashi Y, Yamamoto S, Minami H, et al. Differential activation of the rice sucrose nonfermentingl-related protein kinase2 family by hyperosmotic stress and abscisie acid [ J ] . The Plant Cell, 2004, 16 : 1163-1177.
  • 9Huai JL, Wang M, He J, et al. Cloning and characterization of the SnRK2 gene family from Zea mays [ J ] . Plant Cell Rep, 2008, 27 ( 12 ) : 1861-1868.
  • 10陈娜娜,刘金义,蔡斌,王刚,王敏,程宗明.苹果SnRK2基因家族的鉴定和生物信息学分析[J].中国农学通报,2013,29(13):120-127. 被引量:8

二级参考文献165

  • 1徐顺高,黄新祥,周丽萍.荧光实时定量RT-PCR观察伤寒杆菌鞭毛z66和d/j抗原基因表达方法的建立[J].江苏大学学报(医学版),2005,15(1):21-24. 被引量:3
  • 2Alderson A., Sabelli P.A., Dickinson J.R., Cole D., Richardson M., Kreis M., Shewry P.R., and Halford N.G., 1991, Complementation of snfl, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA, Proc. Nati. Acad. Sci., USA, 88(19): 8602-8605.
  • 3Alepuz P.M., Cunningham K.W., and Estruch F, 1997, Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENAL gene, Mol. Microbiol., 26(1): 91-98.
  • 4Anderberg R.J., and Walker-Simmons M.K., 1992, Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases, Proc. Nati. Acad. Sci., USA, 89(21): 10183-10187.
  • 5Belin C., de Franco P.O., Bourbousse C., Chaignepain S., Schmitter J.M., Vavasseur A., Giraudat J., Barbier-Brygoo H., and Thomine S., 2006, identification of features regulating OSTI kinase activity and OST1 function in guard cells, Plant Physiol., 141(4): 1316-1327.
  • 6Bohnert H.J., Nelson D.E., and Jensen R.G., 1995, Adaptation to environmental stresses, The Plant Cell, 7:1099-1111.
  • 7Boudsocq M., Barbier-Brygoo H., and Lauriore C., 2004, Identification of nine sucrose nonfennenting 1 related protein kinases 2 activated by hyperosmotic and saline stresses in A rabidopsis thaliana,The Journal of Biological Chemistry, 279 (40): 41758-41766.
  • 8Celenza J.L, and Carlson M., 1986, A yeast gene that is essential for release from glucose repression encodes a protein kinase, Science, 233(4769): 1175-1180.
  • 9Chae M.J., Lee J.S., Nam M.H., Cho K., Hong J.Y., Yi S.A., Suh S.C., and Yoon I.S., 2007, A rice dehydration-inducible SNFI-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling, Plant Mol. Biol., 63(2): 151- 169.
  • 10Cheeseman J.M., 1988, Mechanisms of salinity tolerance in plants, Plant Physiol., 87:547-550.

共引文献173

同被引文献33

  • 1段德玉,刘小京,李存桢,乔海龙.N素营养对NaCl胁迫下盐地碱蓬幼苗生长及渗透调节物质变化的影响[J].草业学报,2005,14(1):63-68. 被引量:75
  • 2钟海秀,陈亚州,阎秀峰.植物芥子油苷代谢及其转移[J].生物技术通报,2007,23(3):44-48. 被引量:10
  • 3汪萌,伍祚斌,李定琴,孙雪飘,张家明.拟南芥芥子酶基因TGG6是花特异表达的假基因[J].生命科学研究,2007,11(4):316-322. 被引量:6
  • 4Halkier BA,Gershenzon J. Biology and biochemistry of glucosinola-tes. Annu Rev Plant Biol,2006,57(57):303–333.
  • 5S?nderby IE,Geu-Flores F,Halkier BA. Biosynthesis of glucosino-lates-gene discovery and beyond. Trends in Plant Science,2010,15(5):283–290. DOI:10.1016/j.tplants.2010.02.005.
  • 6Wittstock U,Halkier BA. Glucosinolate research in the Arabidopsis era. Trends in Plant Science,2002,7(6):263–270. DOI:10.1016/S1360-1385(02)02273-2.
  • 7Yuan P,Chen BA,Liu DL. Anticancer mechanisms and researches of isothiocyanates. Chinese Journal of Natural Medicines,2008,6(5):325–332.
  • 8Navarro SL,Li F,Lampe JW. Mechanisms of action of isothiocyanates in cancer chemoprevention: an update. Food & Function,2011,2(10):579–587.
  • 9Fuentes F,Paredes-Gonzalez X,Kong AT. Dietary glucosinolates sulforaphane,phenethyl isothiocyanate,Indole-3-Carbinol/3,3'-Diindolylmethane: Antioxidative stress/inflammation,Nrf2,epigenetics/epigenomics and in vivo cancer chemopreventive efficacy. Curr Pharmacol Rep,2015,1(3):179–196. DOI:10.1007/s40495-015-0017-y.
  • 10Matile PH. The mustard oil bomb-compartmentation of the myrosinase system. Biochemie und Physiologie der Pflanzen,1980,175(8-9):722–731. DOI:10.1016/S0015-3796(80)80059-X.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部