期刊文献+

一种适用于信源数时变的自适应盲源分离算法 被引量:7

Adaptive blind source separation algorithm for time-varying number of sources
下载PDF
导出
摘要 针对信源数动态变化情况下的盲源分离问题,首先采用一种基于交叉验证技术的估计方法用于估计时变的源数,然后推导了一种基于自然梯度和Frobenius范数相结合的自适应盲源分离算法,该算法不需要对源信号作任何约束性的假设,因此该算法适合于分离服从超高斯或亚高斯分布的信号。提出的算法通过了源数不变和源数动态变化2种方式实验的验证。 Aiming at the blind source separation problem of time-varying number of sources,a dynamic source number estimation method based on cross-validation technique is proposed.Then,an adaptive blind source separation algorithm based on natural gradient and Frobenius norm is deduced.The innovative blind separation algorithm does not require the assumption of any restrictions or constraints on source signals;therefore it is suitable for separating the sources obeying super-and sub-Gaussian distributions.At last,the effectiveness of the proposed method was verified in the simulation experiments for time-invariant and time-varying number of sources.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第2期262-270,共9页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(51309116) 福建省教育厅(杰青)基金(JA14169) 人工智能四川省重点实验室开放课题基金(2014RYJ03) 集美大学科研基金(ZQ2013001 ZC20130012)资助项目
关键词 盲源分离 自然梯度 FROBENIUS范数 信源数 惩罚项 BSS natural gradient Frobenius norm number of sources penalty term
  • 相关文献

参考文献20

二级参考文献62

  • 1张朝阳,曹千芊,陈文正.多跳频信号的盲分离与参数盲估计[J].浙江大学学报(工学版),2005,39(4):465-470. 被引量:21
  • 2孙雷,张艳,徐青,张春美.改进APEX算法在图像增强中的应用[J].测绘科学技术学报,2007,24(1):51-53. 被引量:5
  • 3章立军,杨德斌,徐金梧,陈志新.基于数学形态滤波的齿轮故障特征提取方法[J].机械工程学报,2007,43(2):71-75. 被引量:75
  • 4史习智.盲信号处理:理论与实践[M].上海:上海交通大学出版社,2008.
  • 5Cichocki A, Amari S. Adaptive blind signal and im- age proeessing[M]. New York: Wiley, 2003.
  • 6Jutten C, Herault J. Blind source separation, Part I: an adaptive algorithm based on neuromimetic archi- tecture[J]. Signal Processing, 1991, 24(1): 1-10.
  • 7Joho M, Lambert R, Mathis H. Elementary cost functions for blind separation of non-stationary source signals [C]//ICASSP' 01. Rhode Island~ IEEE Computer Society Press, 2001: 2793-2796.
  • 8Joho M, Mathis H. Joint diagnolization of correla- tion matrices by using gradient methods with appli- cation to blind signal separation[C]//2002 Proceed-ings of Sensor Array and Multichannel Signal Pro- cessing Workshop. Piscataway: IEEE Signal Pro- cessing Society, 2002: 273-277.
  • 9Wu J B, Chen J, Zhong P. Time frequency-based blind source separation technique for elimination of cross-terms in wigner distribution [J]. Electronics Letters, 2003, 39(5): 475-477.
  • 10PARK S C ,PARKM K,KANGM G. Super resolution image reconstruction: a technical review [J]. IEEE Signal Processing Magazine ,2003 ,20 (3) :21-35.

共引文献90

同被引文献66

  • 1夏光荣,刘兴钊.相关性噪声对MUSIC算法参数估计性能影响的分析[J].电子测量与仪器学报,2005,19(4):6-11. 被引量:2
  • 2胡隽.盖氏圆准则信源数估计算法的分析与改进[J].系统工程理论与实践,2007,27(10):124-131. 被引量:3
  • 3ASSALEH K. Extraction of fetal electrocardiogram usingadaptive neuro-fuzzy inference systems [ J ] . IEEE Trans-action on Biomedical Engineering, 2007,54 ( 1 ) :59-68.
  • 4WEI Z,HONGXING L, JIANCHUN C. Adaptive filte-ring in phase space for fetal electrocardiogram estimationfrom an abdominal electrocardiogram signal and a thorac-ic electrocardiogram signal [ J ]. IET Signal Processing,2012,6(3) :171-177.
  • 5LIU S J, LIU D L,ZHANG J Q, et al. Extraction of fe-tal electrocardiogram using recursive least squares andnormalized least mean squares algorithms [ C ]. The 3rdInternational Conference on Advanced Computer Control,2011:333-336.
  • 6MARTIN-CLEMENTE R, CAMARGO-OLIVARES J L,HORNILLO-MELLADO S, et al. Fast technique for non-invasive fetal ECG extraction [ J]. IEEE Transaction onBiomedical Engineering, 2011, 58(2) ; 227-230.
  • 7VULLINGS R, MISCHI M. Probabilistic source separa-tion for robust fetal electrocardiography [ J ]. Computa-tional and Mathematical Method in Medicine, 2013 : 1*8.
  • 8NAZARPOUR K,EBADI S,SANEI S. Fetal electrocar-diogram signal modelling using genetic algorithm [ C ].IEEE International Workshop on Medical Measurementand Application, 2007 : 1 -4.
  • 9VAPNIK V N. An overview of statistical learning the-ory [J ] . IEEE Transaction on Neural Networks,1999,10(5) : 988-999.
  • 10SCHOLKOPF B,SMOLA A J, WILLIAMSON R C, etal. New support vector algorithms [ J ] . Neural Computa-tion, 2000, 12(5) :1207-1245.

引证文献7

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部