期刊文献+

PSO最优化PCNN参数的皮质骨微观结构图像分割研究 被引量:4

The image segmentation research of cortical bone microstructure based on PSO optimizing PCNN parameters
下载PDF
导出
摘要 为了更好地识别皮质骨组织学幻灯片中的微观结构(MS),提出了一种基于粒子群优化(PSO)融合脉冲耦合神经网络(PCNN)的分割方法。首先,利用MS图像管理器增强图像的光影像亮度、对比度和色彩,并使用脉冲耦合神经网络进行初级图像分割;然后,基于熵和能量,利用PSO获取适合骨质微观组织分割的最优PCNN参数。最后,利用自适应阀值产生最优质量的分割图像。在自己搜集的皮质骨显微图像上使用精密度、灵敏度、特异性、准确度等指标评估本文方法的有效性,实验结果表明,相比较为新颖的分割方法,本文方法获得了更好的皮质骨微观结构分割性能。 We propose an image segmentation method based on pulse coupled neural networks and particle swarm optimization to better recognize the microstructure( MS) of cortical bone slide. Firstly,use MS image manager to enhance the optical image brightness,contrast and color of images,and use PCNN to do the initial image segmentation.Then,use PSO to get optimization PCNN parameters suitable for bone micro group organization segmentation based on entropy and energy. Finally,use adaptive threshold to generate image segmentation with optimal quality. The effectiveness of proposed method has been verified by experiments on his collection of cortical bone microscopic image with index such as precision,sensitivity,specificity and accuracy. Experimental results show that proposed method has better cortical bone microstructure than other advanced segmentation method.
作者 徐亮 李欣
机构地区 新疆工程学院
出处 《激光杂志》 CAS 北大核心 2015年第2期6-11,共6页 Laser Journal
基金 国家自然科学基金资助项目(61103143) 自治区科技支疆项目(201091220) 新疆工程学院基金资助项目(2014030415)
关键词 图像分割 皮质骨微观结构 自适应阈值 脉冲耦合神经网络 粒子群优化 Image segmentation Cortical bone microstructure Adaptive threshold Pulse coupled neural networks Particle swarm optimization1
  • 相关文献

参考文献17

  • 1樊黎霞,丁光兴,费王华,董雪花,李颖,杨俊生.基于CT图像的长管骨有限元材料属性研究及实验验证[J].医用生物力学,2012,27(1):102-108. 被引量:22
  • 2Chander A, Chatterjee A, Siarry P. A new social and mo- mentum component adaptive PSO algorithm for image seg- mentation[ J]. Expert Systems with Applications, 2011,38 ( 5 ) : 4998-5004.
  • 3Wei S, Hong Q, Hou M. Automatic image segmentation based on PCNN with adaptive threshold time constant [ J ].Neurocomputlng, 2011,74(9 ) : 1485-1491.
  • 4佘黎煌,钟华,张石.结合马尔可夫随机场与模糊C-均值聚类的脑MRI图像分割[J].中国图象图形学报,2012,17(12):1554-1560. 被引量:19
  • 5Mahendran S K, Baboo S S. Enhanced automatic x-ray bone image segmentation using wavelets and morphological operators [ J] on Information and Electronics Eng., 2011, 125-129.
  • 6Yokota F, Okada T, Takao M, et al. Automated CT Seg- mentation of Diseased Hip Using Hierarchical and Condi- tional Statistical Shape Models Medical Image Computing and Computer-Assisted Intervention - MICCAI 2013 [ J]. Springer Berlin Heidelberg, 2013,190-197.
  • 7Kai Z, Bin K, Yan K, et al. auto-threshold bone segmen- tation based on ct image and its application on cta bone- subtraction [ J ] Photonics and Optoelectronic ( SOPO ), IEEE, 2010, 1-5.
  • 8卫娇,郝永强,蓝宁,戴尅戎.基于BP神经网络的CT图像骨皮质分割[J].医用生物力学,2012,27(2):227-232. 被引量:5
  • 9Kim Y, Kim D. A fully automatic vertebra segmentation method using 3D deformable fences [ J ]. Computerized Medical Imaging and Graphics, 2009, 33 (5) : 343-352.
  • 10Jatti A. Segmentation of Microscopic Bone Images [ J ]. In- ternational Journal of Electronics Engineering, 2010, 2 ( 1 ) : 201-209.

二级参考文献56

  • 1苏佳灿,张春才,陈学强,王保华,吴建国,丁祖泉.骨盆及髋臼三维有限元模型材料属性设定及其生物力学意义[J].中国临床康复,2005,9(2):71-73. 被引量:19
  • 2张美超,刘阳,刘则玉,赵卫东,李鉴轶,姜楠,唐雷.利用Mimics和Freeform建立中国数字人上颌第一磨牙三维有限元模型[J].医用生物力学,2006,21(3):208-211. 被引量:29
  • 3劳丽,吴效明,朱学峰.模糊集理论在图像分割中的应用综述[J].中国体视学与图像分析,2006,11(3):200-205. 被引量:20
  • 4彭亮,曾小丽,白净.基于CT数据的股骨三维有限元建模方法[J].清华大学学报(自然科学版),2007,47(3):416-419. 被引量:23
  • 5Wirtz DC,Schiffers N,Pandorf T,et al.Critical evaluationof known bone material properties to realize anisotropic FE-simulation of the proximal femur[J].J Biomech,2000,33(10):1325-1330.
  • 6Rho JY,Hobatho MC,Ashman RB.Relations of mechani-cal properties to density and CT numbers in human bone[J].Med Eng Phys,1995,17(5):347-355.
  • 7Peng L,Bai J,Zeng X,et al.Comparison of isotropic andorthotropic material property assignments on femoral finiteelement models under two loading conditions[J].MedEng Phys,2006,28(3):227-233.
  • 8Lengsfeld M,Schmitt J,Alter P,et al.Comparison of ge-ometry-based and CT voxel-based finite element modelingand experiment alvalidation[J].Med Eng Phys,1998,20(7):515-522.
  • 9Pitzen T,Geisler F,Matthis D,et al.A finite element mod-el for predicting the biomechanical behavior of the humanlumbar spine[J].Control Eng Pract,20021,0(1):83-90.
  • 10Carter DR,Hayes WC.The compressive behavior of boneas a two-phase porous structure[J].J Bone Joint SurgAm,1977,59(7):954-962.

共引文献47

同被引文献35

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部