期刊文献+

基于TDOA测距模型的SOCP和Taylor混合定位方案 被引量:3

TDOA ranging based Second Order Cone Programming and Taylor Hybrid localization
下载PDF
导出
摘要 针对无线传感网络WSNs(Wireless Sensor Networks)的定位问题,提出基于TDOA(Time Different of Arrival)测距模型的SOCP(Second order cone programming)和Taylor混合定位方案,记为SOCP+Taylor。SOCP+Taylor方案首先分析了网络可定位性,并结合刚论(rigid),提出了评判节点可定位的条件。然后,建立TDOA测距模型,并用最大似然估计建立距离测量值的最大似然函数,再通过松弛约束理论将非凸优问题转换成凸优问题,引入惩罚因子,进而利用SOCP估计节点位置,并将此节点位置作为泰勒级数展开法Taylor迭代的初始值,最后,利用Taylor估计节点的最终位置。在不同参考节点数目以及变化的噪声环境下对算法进行仿真。仿真结果表明,提出的定位方案具有高的定位精度,定位误差逼近于CRLB,同时分析了惩罚因子对定位精度的影响,并确定了惩罚因子的最佳取值区域。 For localization in Wireless Sensor Networks( WSNs),the TDOA ranging based Second Order Cone Programming and Taylor Hybrid localization scheme is proposed in this paper,which is marked as SOCP + Taylor scheme. Firstly,in view of network localizability,making use of rigid theory,the new localizability criterion is proposed in this paper. After that,establish TDOA-based ranging model and function of measurement by using maximum likelihood estimate criterion. Non-convex optimal problem is converted into convex optimal problem by relax. Using a penalty term,the initial position of node is estimated by the SOCP,which is considered as the initial guess for Taylor method. Finally,the initial position of node is estimated by the Taylor. Under various number of reference node measurement,the simulations on localization performance is done. Simulation results show that the performance of proposed localization scheme attain CRLB,and determine the best value range of penalty factor.
出处 《激光杂志》 CAS 北大核心 2015年第2期107-112,共6页 Laser Journal
基金 山东省科技发展计划项目(132102210463)
关键词 TDOA 二阶锥规划 泰勒级数展开 图论 定位 无线传感网络 Time difference of Arrival,Second order cone programming,Taylor,Graph theory,localization Wireless Sensor Networks
  • 相关文献

参考文献21

  • 1Hur H, Ahn H. Discrete-time H1 fihering for mobile robot localization using wireless sensor network [ J ]. IEEE Sen- sors J, 2013, 13:245 - 252.
  • 2Conti A, Guerra M, Dardari D, et al. Network experimen- tation for cooperative localization [ J ]. IEEE J Sel Areas Commun,2012, 30:467 - 475.
  • 3Yang Z, Liu Y. Understanding node localizability of wire- less ad hoe and sensor networks [ J ]. IEEE Trans Mobile Computing,2012, 11:1249-1260.
  • 4BAGGIO A, LANGENDOEN K. Monte Carlo localization formobile wireless sensor networks [ J ]. Ad Hoe Networks, 2008,6 ( 5) : 718-733.
  • 5张士庚,曾英佩,陈力军,陈道蓄,谢立.移动传感器网络中定位算法的性能评测[J].软件学报,2011,22(7):1597-1611. 被引量:19
  • 6ZHANG Shi-geng, CAO Jian-nong, CHEN Li-jun, et al. Accurate and energy-efficient range- free localization for mobile sensor networks [ J ]. IEEE Transactions on Mobile Computing,2010,9(6) : 897-910.
  • 7MAO Guo-qiang,FIDAN B,ANDERSON B. Wireless sen- sor networks localization techniques [ J ]. Computer Net- works,2007,51(10) : 2529-2553.
  • 8SSU K F,OU C H,JIAU H C. Localization with mobile an- chor points in wireless sensor networks [ J ]. IEEE Transac- tions on Vehicular Technology,2005,54 ( 3 ) : 1187-1197.
  • 9Schau H C, Robinson A Z. Passive Source Localization em- ploying intersecting spherical surfaces from time- of- arri- val differences [ J ] . IEEE Transactions on Acoustics,Speech, and Signal Processing, 1987, 35 ( 8 ) : 1223- 1225.
  • 10Yiteng Huang, Jacob Benesty , Elko G W, et al. Real- time Passive Source Localization: A Practical Linear- Cor- rection Least- Squares Approach[ J]. IEEE Transactions on Speech and Audio Processing, 2001, 19(8) : 943- 956.

二级参考文献58

  • 1王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:673
  • 2肖玲,李仁发,罗娟.基于非度量多维标度的无线传感器网络节点定位算法[J].计算机研究与发展,2007,44(3):399-405. 被引量:38
  • 3崔逊学,方红雨,朱徐来.传感器网络定位问题的概率特征[J].计算机研究与发展,2007,44(4):630-635. 被引量:14
  • 4Li M, Liu Y, Chen L. Non-threshold based event detection for 3D environment monitoring in sensor networks [J]. IEEE Trans on Knowledge and Data Engineering, 2008, 20( 12): 1699-1711.
  • 5Karp B, Kung H T. GPSR: Greedy perimeter stateless routing for wireless networks [C] //Proc of ACM MobiCom. New York: ACM, 2000: 243-254.
  • 6Pan J, Hou Y T, Cai L, et al. Topology control for wireless sensor networks [C] //Proe of ACM Mobicom. New York: ACM, 2003:286-299.
  • 7Liu Y, Chen L, Pei J, et al. Mining frequent trajectory patterns for activity monitoring using radio frequency tag arrays [C] //Proc of IEEE PerCom. Piscataway, NJ : IEEE, 2007, 37-46.
  • 8Li M, Liu Y. Rendered path: Range-free localization in anisotropic sensor networks with holes [C] //Proc of ACM MobiCom Montreal. New York: ACM, 2007: 51-62.
  • 9Lim H, Hou J C, Localization for anisotropic sensor networks[C] //Proc of IEEE INFOCOM. Piscataway, NJ: IEEE, 2005: 138-149.
  • 10Kwon Y, Agha G. Passive localization: Large size sensor network localization based on environmental events [C] // Proc of ACM/IEEE IPSN. New York: ACM, 2008: 3-14.

共引文献114

同被引文献28

  • 1刘继斌,刘培国,李高升,李文化,周蔚红.三维AOA/TDOA被动定位及其迭代融合算法[J].全球定位系统,2006,31(4):5-9. 被引量:1
  • 2Kalman R. E. A new approach to linear filtering and Predietion Problem[J]. Jornal of Basic Eng(ASME), 1960,82D: 95-108.
  • 3Jens G. Balchen, Nils A. Jenssen etc. A dynamic posi- tioning system based on Kalman filtering and optimal contral[J]. Identification and control, 1980 (3): 135- 163.
  • 4Sung K,Bell M G H,Seong M,et al.Shortest Paths in a Network with Time-dependent Flow Speeds[J].European Journal of Operational Research,2013,121(1):32-39.
  • 5Yang C,Raskin R.Introduction to Distributed Geographic Information Processing Research[J].International Journal of Geographical Information Science,2009,23(5):553-560.
  • 6Kamel I,Faloutsos C.Hilbert R-Tree:An Improved R-Tree Using Fractals[C]//Proceedings of the 20th International Conference on Very Large Data Base.San Francisco,USA:Morgan Kaufmann Publishers Inc.,2012:500-509.
  • 7Ku W S,Zimmermann R,Wang H,et al.Adaptive Nearest Neighbor Queries in Travel Time Networks[C]//Proceedings of the 13th Annual ACM International Workshop on Geographic Information Systems.New York,USA:ACM Press,2014:210-219.
  • 8Wang Y H,Munindar P.Evidence-based Trust a Mathematical Model Geared for Multivalent Systems[J].ACM Transactions on Autonomous and Adaptive Systems,2013,5(3):1-25.
  • 9Trifunovic S,Legender F,Anstasiades C.Social Trust in Opportunistic Networks[C]//Proceedings of INFOCOM IEEE Conference on Computer Communications Workshops.Washington D.C.,USA:IEEE Press,2012:1-6.
  • 10Nepal S,Sherchan W,Paris C.STrust:A Trust Model for Social Networks[C]//Proceedings of the 10th IEEE International Conference on Trust,Security and Privacy in Computing and Communications.Washington D.C.,USA:IEEE Press,2011:841-846.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部