期刊文献+

分数阶混沌系统的主动滑模同步 被引量:32

ACTIVE SLIDING MODE SYNCHRONIZATION OF FRACTIONAL ORDER CHAOTIC SYSTEMS
下载PDF
导出
摘要 结合主动控制和滑模控制原理,提出了一个同步分数阶混沌系统的主动滑模控制方法.该方法首先用分数阶积分对所有维状态分量设计一个滑模面,分数阶混沌系统在该滑模面上稳定.然后采用极点配置的方法获得主动滑模控制器中的增益矩阵.应用Lyapunov稳定性理论、分数阶系统稳定理论对所提的控制器的存在性和稳定性分别进行了分析.对分数阶Lorenz系统进行数值仿真,仿真结果验证了该方法的有效性. This paper proposed an active sliding mode method,which combines the active control theory and the sliding mode theory to synchronize fractional-order chaotic systems. In the active sliding mode control strategy,first the fractional-order integrator was introduced to obtain a novel sliding surface containing all the state components in the system,and the fractional order chaotic system is stable in the sliding surface. Then the gain matrix of the active sliding mode controller was obtained using the pole placement method. The existence and the stability of the proposed controller were analyzed based on Lyapunov stability theory and fractional stability theory. The simulation results of the fractional order Lorenz system verify the effectiveness of the proposed method.
出处 《动力学与控制学报》 2015年第1期18-22,共5页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(61074129)~~
关键词 分数阶滑模面 主动滑模控制 极点配置 fractional order sliding mode surface active sliding mode control the pole placement method
  • 相关文献

参考文献20

  • 1Ott E, Grebogi C, Yorke J A. Controlling chaos. Physics Review Letters, 1990, 64 : 1196 - 1199.
  • 2Carroll T L, Pecora L M. Synchronizing chaotic circuits. IEEE Transactions of Circuits System I, 1991,38:453 - 456.
  • 3Pcora L M, Carroll T L. Synchronization in chaotic sys- tems. Physics Review Letters, 1990, 64(8) : 821 -824.
  • 4Yang Q G, Zeng C B. Chaos in fractional conjugate Lorenz system and its scaling attractors. Gommunications in Non- linear Science and Numerical Simulation, 2010:4041 4051.
  • 5Zhu H, Zhou S B, He Z S. Chaos synchronization of the fractional-order Chen' s system. Chaos, Solitons and Frac- tals, 2009,41:2733 - 2740.
  • 6Radwan A G, Moaddy K, Salama K N, et al. Control and switching synchronization of fractional order chaotic systems using active control technique. Journal of Advanced Re- search, 2013,13 ( 1 ) : 125 - 132.
  • 7刘丁,闫晓妹.基于滑模控制实现分数阶混沌系统的投影同步[J].物理学报,2009,58(6):3747-3752. 被引量:15
  • 8Yin C, Dadras S, Zhong S M, et al. Control of a novel class of fractional-order chaotic systems via adaptive sliding mode control approach. Applied Mathematical Modelling, 2013,37:2469 - 2483.
  • 9Chen N, Wang N Z. Synchronization of chaotic systems via sliding mode control with fractional approach law. In: Con-trol and Decision Conference(CCDC), 2011:1304 - 1307.
  • 10曹鹤飞,张若洵.基于滑模控制的分数阶混沌系统的自适应同步[J].物理学报,2011,60(5):121-125. 被引量:13

二级参考文献37

共引文献79

同被引文献125

引证文献32

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部